收藏 分享(赏)

2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc

上传人:g****t 文档编号:20237 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.04MB
下载 相关 举报
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届黑龙江省海伦市第一中学高三最后一卷数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义两种运算“”与“”,对任意,满足下列运算性质:,;() ,则(2020)(20202018)的值为( )ABCD2已知,为圆上的动点,过点作与垂直的直线交直线于点,若点的横

2、坐标为,则的取值范围是( )ABCD3已知等差数列的前项和为,且,则( )A45B42C25D364己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D65点为的三条中线的交点,且,则的值为( )ABCD6已知复数满足:(为虚数单位),则( )ABCD7阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD8复数(i是虚数单位)在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限9已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则10已知将函数(,)的图象向右平移个单位长度

3、后得到函数的图象,若和的图象都关于对称,则下述四个结论:点为函数的一个对称中心其中所有正确结论的编号是( )ABCD11已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( )ABCD12设,其中a,b是实数,则( )A1B2CD二、填空题:本题共4小题,每小题5分,共20分。13若函数(a0且a1)在定义域m,n上的值域是m2,n2(1mn),则a的取值范围是_14已知多项式的各项系数之和为32,则展开式中含项的系数为_15将函数的图象向左平移个单位长度,得到一个偶函数图象,则_16已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程

4、为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.18(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,求的面积.19(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不

5、超过1小时的概率分别为,健身时间1小时以上且不超过2小时的概率分别为,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.20(12分)已知等腰梯形中(如图1),为线段的中点,、为线段上的点,现将四边形沿折起(如图2)(1)求证:平面;(2)在图2中,若,求直线与平面所成角的正弦值.21(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图

6、,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.22(10分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂

7、生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据新运算的定义分别得出2020和20202018的值,可得选项.【题目详解】由() ,得(+2),又,所以, ,以此类推,202020182018,又,所以, ,以此类推,2020,所以(2020)(20202018),故选:B.【答案点睛

8、】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.2、A【答案解析】由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【题目详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【答案点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.3、D【答案解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【题目详解】由题,.故选:D【答案点睛】本题考查等差数列的性质,考查等差数列的前项和.4、D【答案解析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得

9、,由的面积即可求出,再结合为线段的中点,即可求出到的距离【题目详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【答案点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题5、B【答案解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【题目详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【答案点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,

10、考查运算求解能力,属于中档题.6、A【答案解析】利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【题目详解】由,则,所以.故选:A【答案点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.7、C【答案解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【题目详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【答案点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中

11、认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.8、B【答案解析】利用复数的四则运算以及几何意义即可求解.【题目详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【答案点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.9、D【答案解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.10、B【答案解析】首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【题目详解】解:由题意可得,又和的图象都关于对称,解得,即,又,正确,错误.故

12、选:B【答案点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.11、B【答案解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【题目详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【答案点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.12、D【答案解析】根据复数相等,可得,

13、然后根据复数模的计算,可得结果.【题目详解】由题可知:,即,所以则故选:D【答案点睛】本题考查复数模的计算,考验计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 (1,)【答案解析】在定义域m,n上的值域是m2,n2,等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.【题目详解】由题意知:与的图像在(1,)上恰有两个交点考查临界情形:与切于,故答案为:.【答案点睛】本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.14、【答案解析】令可得各项系数和为,得出,根据第一个因式展开式的常数项与第二个因式的展开式含

14、一次项的积与第一个因式展开式含x的一次项与第二个因式常数项的积的和即为展开式中含项,可得解.【题目详解】令,则得,解得,所以展开式中含项为:,故答案为:【答案点睛】本题主要考查了二项展开式的系数和,二项展开式特定项,赋值法,属于中档题.15、【答案解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【题目详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【答案点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16、【答案解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.三、解答题:共7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2