1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). ABCD2在棱长均相等的正三棱柱中
2、,为的中点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D43秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为ABCD4已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )ABCD5某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )ABCD6已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD7设复数
3、满足,则( )ABCD8已知函数,若,,则a,b,c的大小关系是( )ABCD9已知命题:任意,都有;命题:,则有则下列命题为真命题的是()ABCD10二项式展开式中,项的系数为( )ABCD11是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD12已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D5二、填空题:本题共4小题,每小题5分,共20分。13设变量,满足约束条件,则目标函数的最小值为_14某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为_15函数的图象向右平移个
4、单位后,与函数的图象重合,则_16已知随机变量服从正态分布,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布
5、列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.18(12分)如图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.19(12分)在三棱锥中,是边长为的正三角形,平面平面,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.20(12分)如图,在四棱锥PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M为PC的中点(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN,若直线MN与平面PBC所成角的正弦值为,求的值21
6、(12分)已知数列的前n项和为,且n、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.22(10分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【题目详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满
7、足输出结果,故.故选:C.【答案点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.2、B【答案解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【题目详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角
8、坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【答案点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力3、C【答案解析】由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值【题目详解】解:初始值,程序运行过程如下表所示:,跳出循环,输出的值为其中得故选:【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题4、A【答案解析】先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内
9、列不等式,化简后求得离心率的取值范围.【题目详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【答案点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.5、D【答案解析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【题目详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,.故,故,.故选:.【答案点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.6、C【答案解析】根据题
10、意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【题目详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.7、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.8、D【答案解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可
11、得在上为增函数,又由,分析可得答案【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题9、B【答案解析】先分别判断命题真假,再由复合命题的真假性,即可得出结论.【题目详解】为真命题;命题是假命题,比如当,或时,则 不成立.则,均为假.故选:B【答案点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.10、D【答案解析】写出二项式的通项公式,再分析的系数求解即可.【题目详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【答案点睛】本题主要考查了
12、二项式定理的运算,属于基础题.11、C【答案解析】求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【题目详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【答案点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.12、D【答案解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到
13、焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、-8【答案解析】通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【题目详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【答案点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.14
14、、【答案解析】由三个年级人数成等差数列和总人数可求得高二年级共有人,根据抽样比可求得结果.【题目详解】设高一、高二、高三人数分别为,则且,解得:,用分层抽样的方法抽取人,那么高二年级被抽取的人数为人故答案为:.【答案点睛】本题考查分层抽样问题的求解,涉及到等差数列的相关知识,属于基础题.15、【答案解析】根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.【题目详解】由函数图象的平移变换公式可得,函数的图象向右平移个单位后,得到的函数解析式为,因为函数,所以函数与函数的图象重合,所以,即,因为,所以.故答案为:【答案点睛】本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题.16、0.4【答案解析】