1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知随机变量满足,.若,则( )A,B,C,D,2中,点在边上,平分,若,则( )ABCD3已知m为实数,直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件4已知 ,且是的充分不必要条件,则的取值范围
2、是( )ABCD5若时,则的取值范围为( )ABCD6复数()ABC0D7九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠, 长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是( )A斤B 斤C斤D斤8某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为(
3、)A58厘米B63厘米C69厘米D76厘米9在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是( )ABCD10周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类
4、推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D1511若双曲线的焦距为,则的一个焦点到一条渐近线的距离为( )ABCD12已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是_.14如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_15已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为 16已知 ,
5、则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括赡养老人费用子女教育费用继续教育费用大病医疗费用等其中前两项的扣除标准为:赡养老人费用:每月扣除2000元子女教育费用:每个子女每月扣除1000元新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过300
6、0元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭)若他们的月收入均为20000元,依据样本估计总体的
7、思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望18(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.19(12分)设函数(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围20(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.
8、016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式: 21(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,求证:(1)平面;(2)平面平面22(10分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
9、项是符合题目要求的。1、B【答案解析】根据二项分布的性质可得:,再根据和二次函数的性质求解.【题目详解】因为随机变量满足,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【答案点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.2、B【答案解析】由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【题目详解】平分,根据三角形内角平分线定理可得,又,.故选:.【答案点睛】本题主要考查平面向量的线性运算,属于基础题.3、A【答案解析】根据直线平行的等价条件,求出m的值,结合充分
10、条件和必要条件的定义进行判断即可【题目详解】当m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是“l1l2”的充要条件,故答案为:A【答案点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.4、D【答案解析】“是的充分不必
11、要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【题目详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【答案点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.5、D【答案解析】由题得对恒成立,令,然后分别求出即可得的取值范围.【题目详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,又在单调递增,的取值范围为.故选:D【答案点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.6、C【答案解析】略7、B【
12、答案解析】依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果【题目详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【答案点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题8、B【答案解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【题目详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【答案点睛】本题主要考查了扇形弧长的计算,属于容易题.9、B【答案解析】为弯管,为6个座位的宽度,利用勾股定理求出弧所
13、在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【题目详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【答案点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.10、B【答案解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【题目详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【答案点睛】本题主要考查数制
14、是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.11、B【答案解析】根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【题目详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【答案点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.12、D【答案解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【题目详解】由题意得,.故选:D.【答案点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【题目详解】设,由于在抛物线上,