1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD2在中,为的外心,若,则( )ABCD3若不等式对于一切恒成立,则的最小值是 ( )A0BCD4设Py |yx21,xR,Qy |y2x,xR,则AP QBQ PCQDQ 5已知,则的取值范围是()A0,1BC1,2D0,26已知函数,若成立,则的最小值为( )A0B4CD7在复平面内,复数对应的点位于( )A第一象限B第
3、二象限C第三象限D第四象限8已知为实数集,则( )ABCD9已知集合A0,1,B0,1,2,则满足ACB的集合C的个数为()A4B3C2D110如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )ABCD11已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D312已知函数则函数的图象的对称轴方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13两光滑的曲线相切,那么它们在公共点处的切线方向相同如图所示,一列圆 (an0,rn0,n=1,2)
4、逐个外切,且均与曲线y=x2相切,若r1=1,则a1=_,rn=_14正方体的棱长为2, 是它的内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦), 为正方体表面上的动点,当弦的长度最大时, 的取值范围是_.15已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.16已知函数在上仅有2个零点,设,则在区间上的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.18(12分)如图在直角中,为
5、直角,分别为,的中点,将沿折起,使点到达点的位置,连接,为的中点()证明:面;()若,求二面角的余弦值19(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.20(12分)如图,在正四棱柱中,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.21(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.()求椭圆的标准方程;()设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.22(10分)已知函数(1)若对任意恒成
6、立,求实数的取值范围;(2)求证: 2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【题目详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.2、B【答案解析】首先根据题中条件和三角形中几何关系求出,即可求出的值.【题目详解】如图所示过做三角形三边的垂线,垂
7、足分别为,过分别做,的平行线,由题知,则外接圆半径,因为,所以,又因为,所以,由题可知,所以,所以.故选:D.【答案点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.3、C【答案解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题4、C【答案解析】解:因为P =y|y=-x2+1,
8、xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C5、D【答案解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【答案点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、A【答案解析】令,进而求得,再转化为函数的最值问题即可求解.【题目详解】(),令:,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【答案点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,
9、属于中档题.7、B【答案解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【题目详解】对应的点的坐标为在第二象限故选:B.【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.8、C【答案解析】求出集合,由此能求出【题目详解】为实数集,或,故选:【答案点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题9、A【答案解析】由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【题目详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【答案点睛】考查集合并集运算
10、,属于简单题.10、C【答案解析】分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【题目详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【答案点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.11、C【答案解析】若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【题目详解】由已知,又三角形有一个内角为,所以,解得或(舍),故,当时,取得最大值,所以.故
11、选:C.【答案点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.12、C【答案解析】,将看成一个整体,结合的对称性即可得到答案.【题目详解】由已知,令,得.故选:C.【答案点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得.【题目详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,将与联立消去得,则,整理
12、得,代入得,整理得,则.故答案为:;.【答案点睛】本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.14、【答案解析】由弦的长度最大可知为球的直径.由向量的线性运用表示出,即可由范围求得的取值范围.【题目详解】连接,如下图所示:设球心为,则当弦的长度最大时,为球的直径,由向量线性运算可知正方体的棱长为2,则球的半径为1,所以,而所以,即故答案为:.【答案点睛】本题考查了空间向量线性运算与数量积的运算,正方体内切球性质应用,属于中档题.15、1【答案解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定
13、义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【题目详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1【答案点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键16、【答案解析】先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【题目详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以 ,所以.故答案为:.【答案点睛】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难. 对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【答案解析】(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【题目详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,平面,平面所以,平面,又平面,所以