收藏 分享(赏)

2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc

上传人:la****1 文档编号:20899 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.04MB
下载 相关 举报
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第1页
第1页 / 共21页
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第2页
第2页 / 共21页
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第3页
第3页 / 共21页
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第4页
第4页 / 共21页
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第5页
第5页 / 共21页
2023届重庆市重庆市第一中学高考数学考前最后一卷预测卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD2为比较甲、乙两名高二学生的数学素养,对

2、课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )A乙的数据分析素养优于甲B乙的数学建模素养优于数学抽象素养C甲的六大素养整体水平优于乙D甲的六大素养中数据分析最差3已知双曲线的一条渐近线方程是,则双曲线的离心率为( )ABCD4我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆

3、等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )A400米B480米C520米D600米5已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D256已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD7已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D28设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1BCD9已知无穷等比数列的公比为2,且,则( )ABCD10某程序框图如图所

4、示,若输出的,则判断框内为( )ABCD11已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD12已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的定义域是_14在中,则_,的面积为_15已知,则与的夹角为 .16若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:为的重心;当时,平面;当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤

5、。17(12分)在中,角所对的边分别为,若,且.(1)求角的值;(2)求的最大值.18(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围19(12分)已知函数(1)求函数在处的切线方程(2)设函数,对于任意,恒成立,求的取值范围.20(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐标为,求的值21(12分)某地为改善旅游环境进行景点改造如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路

6、不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BFl3)(1)在图中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标22(10分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.()求椭圆的方程;()设过点的直线与椭圆交于点(

7、不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【题目详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【答案点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键2、C【答案解析】根据题目所给图像,填写好表格,由表格数据选出正确选项.【题目详解】根据雷达图得到如下数据:数学抽象逻辑推理

8、数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【答案点睛】本题考查统计问题,考查数据处理能力和应用意识.3、D【答案解析】双曲线的渐近线方程是,所以,即 , ,即 ,故选D.4、B【答案解析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【题目详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【答案点睛】本题考查了对中国文化的理解与简单应用,属于基础题.5、D【答案解析】由公差d=-2可知数列单调递减,再由余弦

9、定理结合通项可求得首项,即可求出前n项和,从而得到最值.【题目详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【答案点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.6、B【答案解析】根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【题目详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【答案点睛】本题主要考查对命题真

10、假的判断以及真值表的应用,识记真值表,属基础题.7、D【答案解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【题目详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【答案点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.8、A【答案解析】设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【题目详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【答案点睛】本题主要考查了抛物线的方程及其应用,直线的

11、斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.9、A【答案解析】依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【题目详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,解得,所以,故选A。【答案点睛】本题主要考查无穷等比数列求和公式的应用。10、C【答案解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前11第一圈24是第二圈311是第三圈 426是第四圈 557是第五圈 6120否故退出循环的条件应为k5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数

12、的结构特征的关系及循环次数尤其是统计数时,注意要统计的数的出现次数与循环次数的区别11、C【答案解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【题目详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【答案点睛】本题考查了多

13、面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.12、A【答案解析】首先根据为上的减函数,列出不等式组,求得,所以当最小时,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【题目详解】由于为上的减函数,则有,可得,所以当最小时,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为故选:A.【答案点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由,得,所以,所以原函数定义域为,故答案为.14、 【答案解析】利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【题目详解】由余弦定理得,则,因此,的面积为.故答案为:;.【答案点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.15、【答案解析】根据已知条件,去括号得:,16、【答案解析】点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以是正确的;取的中点

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2