1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD2定义在上的奇函数满足,若,则( )AB0C1D23下列不等式正确的是( )ABCD4已知集合,则集合( )ABCD5在等差数列中,若为前项和,
2、则的值是( )A156B124C136D1806已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D117已知函,则的最小值为( )AB1C0D8已知向量,则( )ABC()D( )9若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是110过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D11已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次
3、构成等差数列,且,则椭圆的离心率为ABCD12已知等差数列中,则()A10B16C20D24二、填空题:本题共4小题,每小题5分,共20分。13如图是一个算法伪代码,则输出的的值为_.14已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为_15已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是_.16在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.18(12分)已
4、知,设函数(I)若,求的单调区间:(II)当时,的最小值为0,求的最大值.注:为自然对数的底数.19(12分)已知数列an的各项均为正,Sn为数列an的前n项和,an2+2an4Sn+1(1)求an的通项公式;(2)设bn,求数列bn的前n项和20(12分)已知函数,(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数21(12分)已知.()当时,解不等式;()若的最小值为1,求的最小值.22(10分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题
5、,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【题目详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【答案点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题2、C【答案解析】首先判断出是周期为的周期函数,由此求得所
6、求表达式的值.【题目详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【答案点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3、D【答案解析】根据,利用排除法,即可求解【题目详解】由,可排除A、B、C选项,又由,所以故选D【答案点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题4、D【答案解析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【题目详解】因,所以,故,又, ,则,故集合.故选:D.【答案点睛】本题考查集合的定义,涉及
7、到解绝对值不等式,是一道基础题.5、A【答案解析】因为,可得,根据等差数列前项和,即可求得答案.【题目详解】,.故选:A.【答案点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.6、B【答案解析】根据题意计算,解不等式得到答案.【题目详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【答案点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.7、B【答案解析】,利用整体换元法求最小值.【题目详解】由已知,又,故当,即时,.
8、故选:B.【答案点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.8、D【答案解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【题目详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【答案点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.9、A【答案解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,
9、正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.10、C【答案解析】由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即
10、可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题11、D【答案解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D12、C【答案解析】根据等差数列性质得到,再计算得到答案.【题目详解】已知等差数列中,故答案选C【答案点睛】本题考查了等差数列的性质,是数列的常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、5【答案解析】执行循环结构流程图,即得结果.【
11、题目详解】执行循环结构流程图得,结束循环,输出.【答案点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.14、【答案解析】依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【题目详解】设圆锥的底面半径为,母线长为,高为,所以有 解得, 故该圆锥的体积为。【答案点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。15、【答案解析】根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【题目详解】设点,则,即,当时,等号成立,.故答案为:
12、.【答案点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.16、【答案解析】结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【题目详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【答案点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:
13、共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)证明见解析;(2).【答案解析】试题分析:(1)首先求得集合M,然后结合绝对值不等式的性质即可证得题中的结论;(2)利用平方做差的方法可证得|1-4ab|2|a-b|.试题解析:()证明:记f (x) =|x-1|-|x+2|,则f(x)= ,所以解得-x,故M=(-,).所以,|a|+|b|+=.()由()得0a2,0b2.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)0.所以,|1-4ab|2|a-b|.18、 (I)详见解析;(II) 【答案解析】(I)求导得到,讨论和两种情况,得到答案.(II) ,故,取,求导得到单调性,得到,得到答案.【题目详解】(I) ,当时,恒成立,函数单调递增;当时,当时,函数单调递减;当时,函数单调递增.综上所述:时,在上单调递增;时,在上单调递减,在上单调递增.(II) 在上恒成立;,故,现在证明存在,使的最小值为0.取,(此时可使),故当上时,故,在上单调递增,故在上单调递减,在上单调递增,故.综上所述:的最大值为.【答案点睛】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.19、(1)an2n+1;(2)2