1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若变量,满足,则的最大值为( )A3B2CD102执行如图所示的程序框图,如果输入,则输出属于( )ABCD3已知函数
2、若对区间内的任意实数,都有,则实数的取值范围是( )ABCD4命题:的否定为ABCD5如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )ABCD6中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D47记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD8已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是(
3、 )ABCD9设i为数单位,为z的共轭复数,若,则( )ABCD10命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD11若的展开式中的系数之和为,则实数的值为( )ABCD112已知,则不等式的解集是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13直线(,)过圆:的圆心,则的最小值是_.14函数的图象向右平移个单位后,与函数的图象重合,则_15如图,在长方体中,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是_.16已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_三、解答题:共70分。
4、解答应写出文字说明、证明过程或演算步骤。17(12分)设等比数列的前项和为,若()求数列的通项公式;()在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.18(12分)定义:若数列满足所有的项均由构成且其中有个,有个,则称为“数列”(1)为“数列”中的任意三项,则使得的取法有多少种?(2)为“数列”中的任意三项,则存在多少正整数对使得且的概率为.19(12分)如图所示,在四棱锥中,点分别为的中点.(1)证明:面;(2)若,且,面面,求二面角的余弦值.20(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足A
5、DCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值21(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.22(10分)已知数列,其前项和为,若对于任意,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】画出约
6、束条件的可行域,利用目标函数的几何意义求解最大值即可【题目详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题2、B【答案解析】由题意,框图的作用是求分段函数的值域,求解即得解.【题目详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【答案点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.3、C【答案解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析
7、转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得. 当a1时,所以函数f(x)在单调递减, 因为对区间内的任意实数,都有, 所以, 所以 故a1,与a1矛盾,故a1矛盾. 当1ae时,函数f(x)在0,lna单调递增,在(lna,1单调递减. 所以 因为对区间内的任意实数,都有, 所以, 所以 即 令, 所以 所以函数g(a)在(1,e)上单调递减, 所以, 所以当1ae时,满足题意. 当a时,函数f(x)在(0,1)单调递增, 因为对区间内的任意实数,都有, 所以, 故1+1, 所以 故综上所述,a.故选C.点睛:本题的难点在于“对区间内的任
8、意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.4、C【答案解析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C5、B【答案解析】,将,代入化简即可.【题目详解】.故选:B.【答案点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.6、D【答案解析】根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可
9、知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【答案点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.7、D【答案解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【题目详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【答案点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题8、A【答案解析】由已知先确定出双曲线方程为,再分别找到为直角三
10、角形的两种情况,最后再结合即可解决.【题目详解】由已知可得,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【答案点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.9、A【答案解析】由复数的除法求出,然后计算【题目详解】,故选:A.【答案点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键10、A【答案解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题
11、,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.11、B【答案解析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【题目详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【答案点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.12、A【答案解析】构造函数,通过分析的单调性和对称性,求得不等式的解集.【题目详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所
12、以为奇函数,图像关于原点对称,所以图像关于对称. 不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【答案点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、;【答案解析】求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值【题目详解】圆:的标准方程为,圆心为,由题意,即,当且仅当 ,即时等号成立,故答案为:【答案点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”14、【答案解析】根据
13、函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.【题目详解】由函数图象的平移变换公式可得,函数的图象向右平移个单位后,得到的函数解析式为,因为函数,所以函数与函数的图象重合,所以,即,因为,所以.故答案为:【答案点睛】本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题.15、【答案解析】如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上. 当时.线段的长度最小,再求此时的得解.【题目详解】如图,连接, 因为E,F,G分别为AB,BC,的中点,所以,平面,则平面.因为,所以同理得平面,又.所以平面平面EFG.因为直线平面EFG,所以点P在直线AC上.在中,故当时.线段的长度最小,最小值为.故答案为:【答案点睛】本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对这些知识的理解掌握水平.16、【答案解析】, ,函数y=f(x)g(x)恰好有四个零点,方程f(x)g(x)=0有四个解,即f(x)+f(2x)b=0有四个解,即函数y=f(x)+f(2x)与y=b的图象有四个交