收藏 分享(赏)

2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc

上传人:g****t 文档编号:21748 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.77MB
下载 相关 举报
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第1页
第1页 / 共19页
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第2页
第2页 / 共19页
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第3页
第3页 / 共19页
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第4页
第4页 / 共19页
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第5页
第5页 / 共19页
2023学年黑龙江省安达市育才高中高考数学一模试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )ABCD2已知,则“mn”是“ml”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3若直线ykx1与圆x2y21相交于P、Q两点,且POQ120(其中O为坐标原点),则k的值为()A B C或D和4一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.0

3、01)( )A3.132B3.137C3.142D3.1475 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)6数列满足:,则数列前项的和为ABCD7已知,满足条件(为常数),若目标函数的最大值为9,则( )ABCD8已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD9已知点(m,8)在幂函数的图象上,设,则( )AbacBabcCbcaDacb10已知函数满足:当时,且对任意,都有,则( )A0B1C-1D11设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不

4、充分又不必要条件12台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国台湾地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cmEF=40cmFC=30cm,AEF=CFE=60,则该正方形的边长为( )A50cmB40cmC50cmD20cm二、填空题:本题共4小题,每小题5分,共20分。13若x,y满足,则的最小值为_.14设O为坐标原点, ,若点B

5、(x,y)满足,则的最大值是_15已知向量,满足,则的取值范围为_.16如图,在矩形中,为边的中点,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)等差数列中,(1)求的通项公式;(2)设,记为数列前项的和,若,求18(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证: 19(12分)已知曲线的参数方程为为参数, 曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.20(12分)如图1,在边长为4的正

6、方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.21(12分)已知,.(1)求的值;(2)求的值.22(10分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先由题和抛物线的性质求得点P的坐标和双曲线的半

7、焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【题目详解】由题意知,抛物线焦点,准线与x轴交点,双曲线半焦距,设点 是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上,所以抛物线的准线,从而轴,所以, 即故双曲线的离心率为故选A【答案点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.2、B【答案解析】构造长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断【题目详解】如图,取长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD

8、为,直线=直线。若令AD1m,ABn,则mn,但m不垂直于若m,由平面平面可知,直线m垂直于平面,所以m垂直于平面内的任意一条直线mn是m的必要不充分条件故选:B【答案点睛】本题考点有两个:考查了充分必要条件的判断,在确定好大前提的条件下,从mnm?和mmn?两方面进行判断;是空间的垂直关系,一般利用长方体为载体进行分析3、C【答案解析】直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且POQ=120(其中O为原点),可以发现QOx的大小,求得结果【题目详解】如图,直线过定点(0,1),POQ=120OPQ=30,1=120,2=60,由对称性可知k=故选C【答案点睛】本题考查

9、过定点的直线系问题,以及直线和圆的位置关系,是基础题4、B【答案解析】结合随机模拟概念和几何概型公式计算即可【题目详解】如图,由几何概型公式可知:.故选:B【答案点睛】本题考查随机模拟的概念和几何概型,属于基础题5、C【答案解析】利用终边相同的角的公式判断即得正确答案.【题目详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【答案点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.6、A【答案解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消

10、法求和即可详解:,又=5,即,数列前项的和为,故选A点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7、B【答案解析】由目标函数的最大值为9,我们可以画出满足条件 件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值【题目详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大

11、值,将,代入得:故选:【答案点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值8、D【答案解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和9、B【答案解析】先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【题目详解】由幂函数的定义可知,m11,m2,点(2,8)在幂函数f(x)xn上,2

12、n8,n3,幂函数解析式为f(x)x3,在R上单调递增,1ln3,n3,abc,故选:B.【答案点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.10、C【答案解析】由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【答案点睛】本题考查了分段函数和函数周期的应用,属于基础题.11、C【答案解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【答案点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,

13、属于基础题.12、D【答案解析】过点做正方形边的垂线,如图,设,利用直线三角形中的边角关系,将用表示出来,根据,列方程求出,进而可得正方形的边长.【题目详解】过点做正方形边的垂线,如图,设,则,则,因为,则,整理化简得,又,得 ,.即该正方形的边长为.故选:D.【答案点睛】本题考查直角三角形中的边角关系,关键是要构造直角三角形,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、5【答案解析】先作出可行域,再做直线,平移,找到使直线在y轴上截距最小的点,代入即得。【题目详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距

14、最小,由,可得,因此的最小值为.故答案为:4【答案点睛】本题考查不含参数的线性规划问题,是基础题。14、【答案解析】 ,可行域如图,直线 与圆 相切时取最大值,由 15、【答案解析】设,由,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【题目详解】设,如图所示:因为,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【答案点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.16、【答案解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2