收藏 分享(赏)

2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc

上传人:la****1 文档编号:21824 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.57MB
下载 相关 举报
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第1页
第1页 / 共19页
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第2页
第2页 / 共19页
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第3页
第3页 / 共19页
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第4页
第4页 / 共19页
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第5页
第5页 / 共19页
2023届湖北省武汉市部分重点中学高考冲刺模拟数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若x,y满足约束条件则z=的取值范围为( )AB,3C,2D,22已知集合,则的值域为()ABCD

2、3著名的斐波那契数列:1,1,2,3,5,8,满足,若,则( )A2020B4038C4039D40404某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则( ).A,且B,且C,且D,且5若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD6的二项展开式中,的系数是( )A70B-70C28D-287记等差数列的公差为,前项和为.若,则( )ABCD8运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )ABCD9已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B5C7D910点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足

3、,则动点的轨迹的长度为( )ABCD11设是虚数单位,则( )ABC1D212如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合,则_.14在九章算术中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马如图,若四棱锥为阳马,侧棱底面,且,设该阳马的外接球半径为,内切球半径为,则_15已知下列命题:命题“x0R,”的否定是“xR,x213x”;已知p,q为两个命题,若“pq”为假命题,则“”为真命题;“a2”是“a5”的充分不必要条件;“若xy0,则x0且y0”的逆否命题为真命题其中所有真命题的序号

4、是_16若函数()的图象与直线相切,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M为PC的中点(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN,若直线MN与平面PBC所成角的正弦值为,求的值18(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感

5、染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819(12分)设实数满足.(1)若,求的取值范围;(2)若,求证:.20(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)

6、设,求数列的前项和.21(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.22(10分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.()判断点与直线的位置关系并说明理由;()设直线与曲线的两个交点分别为,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【题目详解】由题意作出可行域,如图,目

7、标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,所以.故选:D.【答案点睛】本题考查了非线性规划的应用,属于基础题.2、A【答案解析】先求出集合,化简=,令,得由二次函数的性质即可得值域.【题目详解】由,得 ,令, ,所以得 , 在 上递增,在上递减, ,所以,即 的值域为故选A【答案点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题3、D【答案解析】计算,代入等式,根据化简得到答案.【题目详解】,故,故.故选:.【答案点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.4、D

8、【答案解析】首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【题目详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,.故选:D.【答案点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.5、C【答案解析】利用复数的除法,以及复数的基本概念求解即可.【题目详解】,又的实部与虚部相等,解得.故选:C【答案点睛】本题主要考查复数的除法运算,复数的概念运用.6、A【答案解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A考点:二项式定理的应用7、C【答案解析】由,和,可求得,从而求得和,再验证选项.【题

9、目详解】因为,所以解得,所以,所以,故选:C.【答案点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.8、B【答案解析】由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,故判断框中应填?故选:【答案点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题9、D【答案解析】根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【题目详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数

10、,在区间上,有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D【答案点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题10、C【答案解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【题目详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为

11、:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【答案点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.11、C【答案解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:, ,解得:.故选:C.【答案点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.12、B【答案解析】,将,代入化简即可.【题目详解】.故选:B.【答案点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.二、填空题:本题共4小

12、题,每小题5分,共20分。13、【答案解析】根据并集的定义计算即可.【题目详解】由集合的并集,知.故答案为:【答案点睛】本题考查集合的并集运算,属于容易题.14、【答案解析】该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出【题目详解】四棱锥为阳马,侧棱底面,且,设该阳马的外接球半径为,该阳马补形所得到的长方体的对角线为外接球的直径,侧棱底面,且底面为正方形,内切球在侧面内的正视图是的内切圆,内切球半径为,故故答案为【答案点睛】本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档

13、题解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.15、【答案解析】命题“xR,x213x”的否定是“xR,x213x”,故错误;“pq”为假命题说明p假q假,则(p)(q)为真命题,故正确;a5a2,但a2/ a5,故“a2”是“a5”的必要不充分条件,故错误;因为“若xy0,则x0或y0”,所以原命题为假命题,故其逆否命题也为假命题,故错误16、2【答案解析】设切点由已知可得,即可解得所求.【题目详解】设,因为,所以,即,又,.所以,即,.故答案为:.【答案点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)1【答案解析】(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN,设N(0,0)(04),则(1,1,2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2