收藏 分享(赏)

北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc

上传人:la****1 文档编号:21907 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.54MB
下载 相关 举报
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第1页
第1页 / 共18页
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第2页
第2页 / 共18页
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第3页
第3页 / 共18页
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第4页
第4页 / 共18页
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第5页
第5页 / 共18页
北京市西城区北京师范大学第二附属中学2023学年高考数学四模试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在空间直角坐标系中,四面体各顶点坐标分别为:假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点那么完成这个工作所需要走的最短路径长度是( )ABCD2已知S

2、n为等比数列an的前n项和,a516,a3a432,则S8( )A21B24C85D853下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实数,“”是“”的充分不必要条件4关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD5执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )A1B2C

3、3D46某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D7若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD8已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD9某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )ABCD10中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、

4、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD11已知为等差数列,若,则( )A1B2C3D612某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元二、填空题:本题共4小题,每小题5分,共20分。13 “”是“”的_条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位

5、长度,则亮亮从移动到最近的走法共有_种15设的内角的对边分别为,若,则_16设定义域为的函数满足,则不等式的解集为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.18(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.19(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.20(12分)已知,均为正项数列,其前项和分别为,且,当

6、,时,.(1)求数列,的通项公式;(2)设,求数列的前项和.21(12分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.22(10分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【题目详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边易求得,由,知,由余弦定理知其中,故选:C【答案点睛】本题考查了余弦定

7、理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.2、D【答案解析】由等比数列的性质求得a1q416,a12q532,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【题目详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【答案点睛】本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.3、D【答案解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【题目详解】命

8、题“,”的否定形式是“,”,故A错误;,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【答案点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.4、D【答案解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【题目详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角

9、形三边,则有,其面积;则有,解得故选:【答案点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.5、C【答案解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1考点:程序框图6、A【答案解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A7、A【答案解析】

10、画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【题目详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【答案点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键8、A【答案解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红

11、球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.9、C【答案解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【题目详解】三棱锥的实物图如下图所示:将其补成直四棱

12、锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【答案点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.10、B【答案解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【题目详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【答案点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基

13、本事件个数.11、B【答案解析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出【题目详解】an为等差数列,,,解得10,d3,+4d10+111故选:B【答案点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题12、D【答案解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【答案解析】由余弦的二倍角公式可得,即或,即可判断命题的关

14、系.【题目详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【答案点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.14、【答案解析】分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【题目详解】分三步来考查:从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;从到,由可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【答案点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.15、或【答案解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角用正弦定理;,则;可得考点:运用正弦定理解三角形(注意多解的情况判断)16、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2