收藏 分享(赏)

2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc

上传人:sc****y 文档编号:35103 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.17MB
下载 相关 举报
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第1页
第1页 / 共20页
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第2页
第2页 / 共20页
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第3页
第3页 / 共20页
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第4页
第4页 / 共20页
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第5页
第5页 / 共20页
2023学年试题山西省怀仁市重点中学高考仿真模拟数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知,则a,b,c的大小关系为( )ABCD2将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD3已知双曲线的左、右焦点分别为,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD4中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD5直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A10B9C8D76已知函数在上都存在导函数,对于任意的实数都有,当时,若,则实数的取值范围是( )ABCD7洛书,古称龟书,是阴阳五行

3、术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD8已知函数,.若存在,使得成立,则的最大值为( )ABCD9直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为ABCD10已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD11已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD12是定义在上的增函数,且满足:的导函数存在,且,则下列不

4、等式成立的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知一组数据,1,0,的方差为10,则_14已知三棱锥的四个顶点都在球O的球面上,E,F分别为,的中点,则球O的体积为_.15若存在直线l与函数及的图象都相切,则实数的最小值为_16已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前n项和,是等差数列,且.()求数列的通项公式;()令.求数列的前n项和.18(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设

5、直线,的斜率分别为,求证:常数;(2)设的内切圆圆心为的半径为,试用表示点的横坐标;当的内切圆的面积为时,求直线的方程.19(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再

6、随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)20(12分)如图,三棱锥中,.(1)求证:;(2)求直线与平面所成角的正弦值.21(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系22(10分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病

7、毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.8282023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、

8、D【答案解析】与中间值1比较,可用换底公式化为同底数对数,再比较大小【题目详解】,又,即,故选:D.【答案点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较2、B【答案解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【答案点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键3、C【答案解析】由双曲线定义得,OM是的中位线,可得,在中,利用余弦定理即可

9、建立关系,从而得到渐近线的斜率.【题目详解】根据题意,点P一定在左支上.由及,得,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【答案点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.4、A【答案解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【题目详解】解:.故选:A【答案点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题5、B【答案解析】根据抛物线中过焦点的两段

10、线段关系,可得;再由基本不等式可求得的最小值【题目详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不等式可知,此时所以选B【答案点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题6、B【答案解析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,又,所以为偶函数, 从而等价于,因此选B.【答案点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.7、A【答案解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出

11、其和等于11的概率【题目详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【答案点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题8、C【答案解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【题目详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单

12、调递减.所以,.故选:C.【答案点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.9、D【答案解析】设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值【题目详解】设,联立,得则,则由,得 设,则 ,则点到直线的距离从而令 当时,;当时,故,即的最小值为本题正确选项:【答案点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.10、A【答案解析】先根据奇函数求出

13、m的值,然后结合单调性求解不等式.【题目详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【答案点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.11、C【答案解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【题目详解】当时,所以,故当时,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【答案点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.12、D【答案解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【题目详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【答案点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、7或【答案解析】依据方差公式列出方程,解出即可【题目详解】,1,0,的平均数为,所以 解得或【答案点睛】本题主要考查方差公式的应用1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2