1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等差数列中,则数列前6项和为()A18B24C36D722已知为锐角,且,则等于( )ABCD3在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,那么( )ABCD4易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD5为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长
3、度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度6过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或7已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD8若直线不平行于平面,且,则( )A内所有直线与异面B内只存在有限条直线与共面C内存在唯一的直线与平行D内存在无数条直线与相交9函数,则“的图象关于轴对称”是“是奇函数”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增大11设,则,则( )ABCD12已知分别为圆与的直
4、径,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数过定点_.14在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为_.15 “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学
5、习方法有_种.16如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为(1)求曲线的极坐标方程和曲线的普通方程;(2)设射线与曲线
6、交于不同于极点的点,与曲线交于不同于极点的点,求线段的长18(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.19(12分)已知函数,且(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由20(12分)已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.21(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目
7、时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计 (2)将上述调查所得到的频率视为概率现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)附:.P(K2k)0.050.01k3.8416.63522(10分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题
8、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由等差数列的性质可得,根据等差数列的前项和公式可得结果.【题目详解】等差数列中,即,故选C.【答案点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.2、C【答案解析】由可得,再利用计算即可.【题目详解】因为,所以,所以.故选:C.【答案点睛】本题考查二倍角公式的应用,考查学生对三角函数式化简求值公式的灵活运用的能力,属于基础题.3、D【答案解析】由得,分别算出和的值,从而得到的值.【题目详解】,当时,当时,故选:D.【答案点睛】本小题主要考查对数运算,属于基
9、础题.4、A【答案解析】阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【答案点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.5、D【答案解析】通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【答案点睛】本题主要考查三角函数的平移变换,难度不大.6、A【答案解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求
10、得直线的倾斜角为,进而求得的斜率.【题目详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【答案点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.7、B【答案解析】根据函数单调性逐项判断即可【题目详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【答案点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题8、D【答案解析】通过条件判
11、断直线与平面相交,于是可以判断ABCD的正误.【题目详解】根据直线不平行于平面,且可知直线与平面相交,于是ABC错误,故选D.【答案点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9、B【答案解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可【题目详解】设,若函数是上的奇函数,则,所以,函数的图象关于轴对称.所以,“是奇函数”“的图象关于轴对称”;若函数是上的偶函数,则,所以,函数的图象关于轴对称.所以,“的图象关于轴对称”“是奇函数”.因此,“的图象关于轴对称”是“是奇函数”的必要不充分条件.故选:B.【答案点睛】本题主要考查充分条件和必要条件的判断
12、,结合函数奇偶性的性质判断是解决本题的关键,考查推理能力,属于中等题.10、C【答案解析】,判断其在内的单调性即可【题目详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【答案点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题11、A【答案解析】根据换底公式可得,再化简,比较的大小,即得答案.【题目详解】,.,显然.,即,即.综上,.故选:.【答案点睛】本题考查换底公式和对数的运算,属于中档题.12、A【答案解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【题目详解】如图,其中,所以.故选:A【答案点睛】本题考
13、查向量的线性运算在几何中的应用,数形结合思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】令,与参数无关,即可得到定点.【题目详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【答案点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.14、【答案解析】求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积【题目详解】解:双曲线:双曲线中,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,则三角形的面积为故答
14、案为:【答案点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题15、【答案解析】先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.【题目详解】若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;因此共有种.故答案为:【答案点睛】本题考查排列组合实际问题,考查基本分析求解能力,属基础题.16、(1);(2).【答案解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式