收藏 分享(赏)

2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc

上传人:la****1 文档编号:47818 上传时间:2023-01-07 格式:DOC 页数:20 大小:2.61MB
下载 相关 举报
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届湖北省仙桃、天门、潜江市高三第二次调研数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在等差数列中,若,则( )A8B12C14D102已知集合A,B=,则AB=ABCD3执行如图所示的程序框图若输入,则输出的的值为( )ABCD4的展开式中的项的系数为( )A120B80C60D405方程的实数根叫作函数的“新驻点”,如果函数的

2、“新驻点”为,那么满足( )ABCD6已知向量,且,则m=( )A8B6C6D87已知函数的图象如图所示,则可以为( )ABCD8抛物线的焦点为,准线为,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是( )ABCD9已知函数,若函数有三个零点,则实数的取值范围是( )ABCD10若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是( )ABCD11已知集合,则( )ABCD12在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数图象上一点处的切线方程为,则_14设为抛物线的焦点,为上

3、互相不重合的三点,且、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_.15已知函数,若,则_.16二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.18(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.19(12分)如图,在四棱锥中,底面为菱形,底面,.(1)求证:平面;(2)若

4、直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.20(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程21(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.22(10分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,平面平面,为中点.(1)求证:平面;(2)若,求二面角的余弦值大小.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答

5、案解析】将,分别用和的形式表示,然后求解出和的值即可表示.【题目详解】设等差数列的首项为,公差为,则由,得解得,所以故选C【答案点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.2、A【答案解析】先解A、B集合,再取交集。【题目详解】,所以B集合与A集合的交集为,故选A【答案点睛】一般地,把不等式组放在数轴中得出解集。3、C【答案解析】由程序语言依次计算,直到时输出即可【题目详解】程序的运行过程为当n=2时,时,此时输出.故选:C【答案点睛】本题考查由程序框图计算输出结果,属于基础题4、A【答案解析】化简得到,再利用二项式定理展开得到答

6、案.【题目详解】展开式中的项为.故选:【答案点睛】本题考查了二项式定理,意在考查学生的计算能力.5、D【答案解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【题目详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【答案点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.6、D【答案解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【题目详解】,又,34+(2)(m2)0,解得m1故选D【答案

7、点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题7、A【答案解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【题目详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【答案点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题8、B【答案解析】试题分析:设在直线上的投影分别是,则,又是中点,所

8、以,则,在中,所以,即,所以,故选B考点:抛物线的性质【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系9、B【答案解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【题目详解】

9、根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个零点,当时,若,则,即,所以,解得;当时,则,且若在时有一个零点,则,综上可得,故选:B.【答案点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.10、B【答案解析】求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【题目详解】,设,要使在区间上不是单调函数,即在上有变号零点,令, 则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【答案点睛】本小题主要考查利用导数研究函数的单调性,考

10、查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.11、A【答案解析】求得集合中函数的值域,由此求得,进而求得.【题目详解】由,得,所以,所以.故选:A【答案点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.12、C【答案解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【题目详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径

11、为:,三棱锥外接球的表面积为故选:.【答案点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】求出导函数,由切线方程得切线斜率和切点坐标,从而可求得【题目详解】由题意,函数图象在点处的切线方程为,解得,故答案为:1【答案点睛】本题考查导数的几何意义,求出导函数是解题基础,14、或【答案解析】设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【题目详解】抛物线的准线方程为:,设,由抛物线的定义可知:,因为、成等差数列,所以有,所以,

12、因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【答案点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.15、【答案解析】根据题意,利用函数奇偶性的定义判断函数的奇偶性,利用函数奇偶性的性质求解即可.【题目详解】因为函数,其定义域为,所以其定义域关于原点对称,又,所以函数为奇函数,因为,所以.故答案为:【答案点睛】本题考查函数奇偶性的判断及其性质;考查运算求解能力;熟练掌握函数奇偶性的判断方法是求解本题的关键;属于中档题、常考题型.16、【答案解析】由二项式系数性质求出,由二项展开式通项公

13、式得出常数项的项数,从而得常数项【题目详解】由题意,展开式通项为,由得,常数项为故答案为:【答案点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【答案解析】(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【题目详解】(1),,又,,而、分别是、的中点, 故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线, 故面面. (2)由(1)可知,两两垂直,故建系如图所示,则,, 设是平面PAB的法向量,,令,则, 直线NE与平面所成角的余弦值为.【答案点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.18、(1)见解析;(2)【答案解析】(1)取中点,中点,连接,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【题目详解】(1)取中点,中点,连接,.设交于,则为的中点,连接.设,则,.由已知,平面,.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2