1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )A30B45C60D752已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD3已知四棱锥,底面ABCD
2、是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD14已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5设,是两条不同的直线,是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则;其中真命题的个数为( )ABCD6如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该
3、折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格7已知向量与的夹角为,则( )AB0C0或D8已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D49已知向量,是单位向量,若,则( )ABCD10如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D11已知函数在上都存在导函数,对于任意的实
4、数都有,当时,若,则实数的取值范围是( )ABCD12已知集合,则集合的真子集的个数是( )A8B7C4D3二、填空题:本题共4小题,每小题5分,共20分。13实数,满足,如果目标函数的最小值为,则的最小值为_14如图,在等腰三角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 15已知双曲线-=1(a0,b0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_.16已知函数,令,若,表示不超过实数的最大整数,记数列的前项和为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已
5、知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.18(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.19(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围20(12分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,若,求的最小值.21(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.求椭圆的标准方程;若,求
6、的值;设直线, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.22(10分)已知函数.()已知是的一个极值点,求曲线在处的切线方程()讨论关于的方程根的个数.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】如图所示:作垂直于准线交准线于,则,故,得到答案.【题目详解】如图所示:作垂直于准线交准线于,则,在中,故,即.故选:.【答案点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.2、B【答案解析】由于直线的斜率k,所以一条渐近线
7、的斜率为,即,所以,选B.3、B【答案解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【题目详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【答案点睛】本
8、题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.4、B【答案解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【题目详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【答案点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题5、C【答案解析】利用线线、线面、面面相应的判定与性质来解决.【题目详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知正确;当直线平行于平面与平面的交线时也有,故错误;若,则垂直平面内以及与平
9、面平行的所有直线,故正确;若,则存在直线且,因为,所以,从而,故正确.故选:C.【答案点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.6、D【答案解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【题目详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D【答案点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.7、B【答案解析】由数量积的定义表
10、示出向量与的夹角为,再由,代入表达式中即可求出.【题目详解】由向量与的夹角为,得,所以,又,所以,解得.故选:B【答案点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.8、A【答案解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【题目详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【答案点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平9、C【答案解析】设,根据题意
11、求出的值,代入向量夹角公式,即可得答案;【题目详解】设,是单位向量,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【答案点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.10、A【答案解析】由,两边平方后展开整理,即可求得,则的长可求【题目详解】解:,故选:【答案点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题11、B【答案解析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【题目详解】令,则当时,又,所以为偶函数
12、, 从而等价于,因此选B.【答案点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.12、D【答案解析】转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【题目详解】由题意得,集合的真子集的个数为个.故选:D.【答案点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【题目详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值
13、,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【答案点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.14、【答案解析】根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【题目详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线
14、段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时, 取得最小值因而故答案为: 【答案点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.15、【答案解析】设点为,由抛物线定义知,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【题目详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【答案点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用