收藏 分享(赏)

2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc

上传人:g****t 文档编号:16394 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.14MB
下载 相关 举报
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第1页
第1页 / 共20页
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第2页
第2页 / 共20页
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第3页
第3页 / 共20页
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第4页
第4页 / 共20页
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第5页
第5页 / 共20页
2023学年福建省龙岩市龙岩北附高考数学必刷试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称2欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角

2、函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”根据欧拉公式可知,表示的复数位于复平面中的( )A第一象限B第二象限C第三象限D第四象限3已知正项等比数列的前项和为,且,则公比的值为()AB或CD4平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD5根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )A至少有一个样本点落在回归直线上B若所有样本点都在回归直线上,则变量同的相关系数为1C对所有的解释变量(),的值一定与有误差D若回归直线的斜率,则变量x与y正相关6已知全集为,集合,则( )ABCD7设命题函数在上递增,命题在中

3、,下列为真命题的是( )ABCD8关于函数有下述四个结论:( )是偶函数; 在区间上是单调递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD9函数的值域为( )ABCD10点为的三条中线的交点,且,则的值为( )ABCD11已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD12设曲线在点处的切线方程为,则( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是_;最大值为_.14已知数列的首项,函数在上有唯一零点,则数列|的前项和_.15在

4、中,内角所对的边分别是.若,则_,面积的最大值为_.16已知多项式满足,则_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.18(12分)在直角坐标平面中,已知的顶点,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.19(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,

5、上);再取的中点M,建造直道(如图).设,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.20(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.21(12分)已知函数(I)若讨论的单调性;()若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.22(10分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的

6、数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).(1)求样本平均数的大小;(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【题目详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【

7、答案点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.2、A【答案解析】计算,得到答案.【题目详解】根据题意,故,表示的复数在第一象限.故选:.【答案点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.3、C【答案解析】由可得,故可求的值.【题目详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【答案点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.4、C【答案解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.

8、【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.5、D【答案解析】对每一个选项逐一分析判断得解.【题目详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确故选D【答案点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【答案解析】对于集合,求得函数的定义域,再求得补集;对于集合,解

9、得一元二次不等式,再由交集的定义求解即可.【题目详解】,.故选:D【答案点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.7、C【答案解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【题目详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【答案点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题8、C【答案解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结

10、论的编号.【题目详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【答案点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.9、A【答案解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【题目详解】,因此,函数的值域为.故选:A.【答案点睛】本题考查

11、正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.10、B【答案解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【题目详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【答案点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.11、A【答案解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【题目详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以

12、当时,所以,所以.由得,所以,故不等式的解集为.故选:A【答案点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.12、D【答案解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【题目详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【答案点睛】本题考查导数的几何意义,考查运算求解能力,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、(或写成)【答案解析】试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为考点:函数最值,函数单调区间14、【答案解析】由函数为偶函数,可得唯

13、一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【题目详解】因为为偶函数,在上有唯一零点,所以,为首项为2,公比为2的等比数列.所以,.故答案为:【答案点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.15、1 【答案解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【题目详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【答案点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,

14、属于基础题型.16、 【答案解析】多项式 满足令,得,则该多项式的一次项系数为令,得故答案为5,72三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】(1)根据面面垂直的判定定理可知,只需证明平面即可由为菱形可得,连接和与的交点,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值【题目详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,两两垂直.如图以

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2