1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )A30B45C60D752已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称3某
2、空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )ABC16D324已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD5已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则( )ABCD6已知向量与向量平行,且,则( )ABCD7某几何体的三视图如图所示,则该几何体的最长棱的长为( )ABCD8设全集,集合,则集合( )ABCD9已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )ABCD10在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终
3、边落在直线上,则( )ABCD11某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )ABCD12已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)函数的定义域是_14已知半径为4的球面上有两点,球心为O,若球面上的动点C满足二面角的大小为,则四面体的外接球的半径为_.15若为假,则实数的取值范围为_.16设满足约束条件,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知,.(1)求证:;(2)若,求证:.18(
4、12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.19(12分)在中,内角的对边分别是,已知(1)求的值;(2)若,求的面积20(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求的面积21(12分)已知函数(1)讨论的单调性;(2)当时,求的取值范围.22(10分)在中,角、所对的边分别为、,角、的度数成等差数列,.(1)若,求的值;(2)求的最大值.
5、2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】如图所示:作垂直于准线交准线于,则,故,得到答案.【题目详解】如图所示:作垂直于准线交准线于,则,在中,故,即.故选:.【答案点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.2、C【答案解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【题目详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【答案点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,
6、属于基础题.3、A【答案解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.4、D【答案解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【题目详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【答案点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题5、A【答案解析】画出函数的图
7、像,函数对称轴方程为,由图可得与关于对称,即得解.【题目详解】函数的图像如图,对称轴方程为,又,由图可得与关于对称,故选:A【答案点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.6、B【答案解析】设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【题目详解】设,且,由得,即,由,所以,解得,因此,.故选:B.【答案点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.7、D【答案解析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可
8、知,几何体是一个四棱锥,如图所示:由三视图知: , 所以,所以,所以该几何体的最长棱的长为故选:D【答案点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.8、C【答案解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.9、B【答案解析】试题分析:由题意得,所以,所求双曲线方程为考点:双曲线方程.10、C【答案解析】利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【题目详解】因为,且,所以.故选:C.【答案点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的
9、两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.11、C【答案解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【题目详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【答案点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合
10、适的模型进行计算,考查推理能力与计算能力,属于中等题.12、C【答案解析】根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【题目详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】要使函数有意义,则,即,解得,故函数的定义域是14、【
11、答案解析】设所在截面圆的圆心为,中点为,连接,易知即为二面角的平面角,可求出及,然后可判断出四面体外接球的球心在直线上,在中,结合,可求出四面体的外接球的半径.【题目详解】设所在截面圆的圆心为,中点为,连接,OAOB,所以,ODAB,同理O1DAB,所以,即为二面角的平面角,因为,所以是等腰直角三角形,在中,由cos60,得,由勾股定理,得:,因为O1到A、B、C三的距离相等,所以,四面体外接球的球心在直线上,设四面体外接球半径为,在中,由勾股定理可得:,即,解得【答案点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题15、【答案解析】由为假,
12、可知为真,所以对任意实数恒成立,求出的最小值,令即可.【题目详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【答案点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.16、【答案解析】作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【题目详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【答案点睛】本题考查分式型目标函数的线性规划
13、问题,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【答案解析】(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【题目详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,当且仅当时等号成立.将上面四式相加,可得,即.【答案点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题.18、(1)(2)直线l的斜率为或【答案解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【题目详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【答案点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.19、(1);(2).【答案解析】(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,, 利用三角形内角和定理可得,由三角形面积公式可得结果.【题目详解】(1)由题意,得. , , .(2),由正弦定理,可得. ab,