1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,满足约束条件,则的取值范围为( )ABCD2若x(0,1),alnx,b,celnx,则a,b
2、,c的大小关系为()AbcaBcbaCabcDbac3执行如图所示的程序框图,若输出的,则处应填写( )ABCD4数列满足:,为其前n项和,则( )A0B1C3D45已知集合A,则集合( )ABCD6若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是17若的展开式中含有常数项,且的最小值为,则( )ABCD8定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )ABCD9已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-210复数的虚部为()A
3、1B3C1D211陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )ABCD12一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平行四边形中,已知,若,则_14工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_15如图,在矩形中,为边的中点,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成
4、的平面图形绕直线旋转一周,则所形成的几何体的体积为 .16在的二项展开式中,所有项的系数的和为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值18(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.19(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;
5、(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.20(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”
6、;(2)按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)21(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,
7、且,求的取值范围.22(10分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【题目详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【答案点睛】本题考
8、查根据线性规划求范围,属于基础题.2、A【答案解析】利用指数函数、对数函数的单调性直接求解【题目详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【答案点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题3、B【答案解析】模拟程序框图运行分析即得解.【题目详解】;.所以处应填写“”故选:B【答案点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.4、D【答案解析】用去换中的n,得,相加即可找到数列的周期,再利用计算.【题目详解】由已知,所以,+,得,从而,数列是以6为周期
9、的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【答案点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.5、A【答案解析】化简集合,,按交集定义,即可求解.【题目详解】集合,则.故选:A.【答案点睛】本题考查集合间的运算,属于基础题.6、A【答案解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确
10、;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【答案点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.7、C【答案解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再
11、由通项写出第项,由特定项得出值,最后求出其参数.8、B【答案解析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【题目详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【答案点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.9、B【答案解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1
12、-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【题目详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.故选:B.【答案点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.10、B【答案解析】对复数进行化简计算,得到答案.【题目详解】所以的虚部为故选B项.【答案点睛】本题考查复数的计算,虚部的概念,属于简单题.11
13、、C【答案解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【题目详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【答案点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12、D【答案解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知
14、识的理解掌握水平二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设,则,得到,利用向量的数量积的运算,即可求解【题目详解】由题意,如图所示,设,则,又由,所以为的中点,为的三等分点,则,所以【答案点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题14、60【答案解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.详解:根据题意,第一个可以从6个钉里任意选一个