1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国宋代数学家秦九韶(1202-1261)在数书九章(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,
2、求三角形面积,即. 若的面积,则等于( )ABC或D或2设,则ABCD3如果,那么下列不等式成立的是( )ABCD4已知四棱锥中,平面,底面是边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD5已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD6已知复数满足(其中为的共轭复数),则的值为( )A1B2CD7抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( )A1个B2个C0个D无数个8在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我
3、和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙9设,则( )ABCD10若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为20,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为811直角坐标系中,双曲线()与抛物线相交于、两点,若是等边三角形,则该双曲线的离心率( )ABCD12如图所示,三国时代数学家赵爽在周髀算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若
4、向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A134B67C182D108二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线(,)的左,右焦点分别为,过点的直线与双曲线的左,右两支分别交于,两点,若,则双曲线的离心率为_. 14已知是等比数列,若,,且,则_.15已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_16已知,如果函数有三个零点,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,函数(1)若,求的单调递增区间;(2)若,求的值18(12分)如图,已知四棱
5、锥,底面为边长为2的菱形,平面,是的中点,() 证明:;() 若为上的动点,求与平面所成最大角的正切值19(12分)如图,在棱长为的正方形中,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角(1)证明:;(2)求与面所成角的正弦值20(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁
6、的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.21(12分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.22(10分)已知抛物线:y22px(p0)的焦点为F,P是抛物线上一点,且在第一象限,满足(2
7、,2)(1)求抛物线的方程;(2)已知经过点A(3,2)的直线交抛物线于M,N两点,经过定点B(3,6)和M的直线与抛物线交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】将,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【题目详解】已知,代入,得,即 ,解得,当时,由余弦弦定理得: ,.当时,由余弦弦定理得: , .故选:C【答案点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力
8、,属于基础题.2、C【答案解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3、D【答案解析】利用函数的单调性、不等式的基本性质即可得出.【题目详解】,.故选:D.【答案点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.4、B【答案解析】由题意建立空间直角
9、坐标系,表示出各点坐标后,利用即可得解.【题目详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,为的中点,.,异面直线与所成角的余弦值为即为.故选:B.【答案点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.5、B【答案解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【题目详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.故选B【答案点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.6、D【答案解析】按照复数的运算法则先求出,再写出
10、,进而求出.【题目详解】,.故选:D【答案点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.7、B【答案解析】圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆【题目详解】因为点在抛物线上,又焦点,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种故选:【答案点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上8、A【答案解析】利用逐一验证的方法进
11、行求解.【题目详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A【答案点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查9、D【答案解析】结合指数函数及对数函数的单调性,可判断出,即可选出答案.【题目详解】由,即,又,即,即,所以.故选:D.【答案点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.10
12、、D【答案解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【答案点睛】样本的平均数是,方差为,则的平均数为,方差为.11、D【答案解析】根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【题目详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到 故答案为:D.【答案点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,
13、然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).12、B【答案解析】根据几何概型的概率公式求出对应面积之比即可得到结论.【题目详解】解:设大正方形的边长为1,则小直角三角形的边长为,则小正方形的边长为,小正方形的面积,则落在小正方形(阴影)内的米粒数大约为,故选:B.【答案点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【
14、题目详解】解:设,由双曲线的定义得出:,由图可知:,又,即,则,为等腰三角形,设,则,即,解得:,则,解得:,解得:,在中,由余弦定理得:,即:,解得: ,即. 故答案为:.【答案点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.14、【答案解析】若,,且,则,由是等比数列,可知公比为.故答案为.15、【答案解析】由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【题目详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【答案点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.16、【答案解析】首先把零点问题转