收藏 分享(赏)

2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc

上传人:g****t 文档编号:18280 上传时间:2023-01-06 格式:DOC 页数:16 大小:1.50MB
下载 相关 举报
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第1页
第1页 / 共16页
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第2页
第2页 / 共16页
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第3页
第3页 / 共16页
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第4页
第4页 / 共16页
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第5页
第5页 / 共16页
2023届上海市同济大学第一附属中学高考冲刺模拟数学试题(含解析).doc_第6页
第6页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在等腰梯形中,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )A

2、BCD2已知,则的取值范围是()A0,1BC1,2D0,23函数的单调递增区间是( )ABCD4已知,且,则在方向上的投影为( )ABCD5 的内角的对边分别为,已知,则角的大小为( )ABCD6设,其中a,b是实数,则( )A1B2CD7执行如图所示的程序框图,若输出的值为8,则框图中处可以填( )ABCD8已知等比数列满足,等差数列中,为数列的前项和,则( )A36B72CD9设曲线在点处的切线方程为,则( )A1B2C3D410双曲线的渐近线与圆(x3)2y2r2(r0)相切,则r等于()AB2C3D611某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方

3、图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A56B60C140D12012已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若,则_.14设,满足约束条件,若目标函数的最大值为,则的最小值为_15如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的

4、体积为_16已知集合,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值18(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.19(12分)的内角的对边分别为,若(1)求角的大小(2)若,求的周长20(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,

5、求线段的长. 21(12分)已知是等差数列,满足,数列满足,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.22(10分)已知函数,其中(1)讨论函数的零点个数;(2)求证:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积【题目详解】由题意等腰梯形中,又,是靠边三角形,从而可得,折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,外接球球心必在高上,设外接球半径为,即

6、,解得,球体积为故选:A【答案点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体2、D【答案解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【答案点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、D【答案解析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【题目详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【答案点睛】本题考查了辅助角公式,考查正弦型

7、函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.4、C【答案解析】由向量垂直的向量表示求出,再由投影的定义计算【题目详解】由可得,因为,所以故在方向上的投影为故选:C【答案点睛】本题考查向量的数量积与投影掌握向量垂直与数量积的关系是解题关键5、A【答案解析】先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【题目详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【答案点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.6、D【答案解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【题目详解】由题可知:,

8、即,所以则故选:D【答案点睛】本题考查复数模的计算,考验计算,属基础题.7、C【答案解析】根据程序框图写出几次循环的结果,直到输出结果是8时.【题目详解】第一次循环:第二次循环:第三次循环:第四次循环:第五次循环:第六次循环:第七次循环: 第八次循环: 所以框图中处填时,满足输出的值为8.故选:C【答案点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.8、A【答案解析】根据是与的等比中项,可求得,再利用等差数列求和公式即可得到.【题目详解】等比数列满足,所以,又,所以,由等差数列的性质可得.故选:A【答案点睛】本题主要考查的是等比数列的性质,考查等差数列的求和

9、公式,考查学生的计算能力,是中档题.9、D【答案解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【题目详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【答案点睛】本题考查导数的几何意义,考查运算求解能力,是基础题10、A【答案解析】由圆心到渐近线的距离等于半径列方程求解即可.【题目详解】双曲线的渐近线方程为yx,圆心坐标为(3,0)由题意知,圆心到渐近线的距离等于圆的半径r,即r.答案:A【答案点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.11、C【答案解析】试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率

10、分布直方图及其应用12、D【答案解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【题目详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【答案点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】直接利用关系式求出函数的被积函数的原函数,进一步求出的值【题目详解】解:若,则,即,所以故答案为:【答案点睛】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题14、【答

11、案解析】先根据条件画出可行域,设,再利用几何意义求最值,将最大值转化为轴上的截距,只需求出直线,过可行域内的点时取得最大值,从而得到一个关于,的等式,最后利用基本不等式求最小值即可【题目详解】解:不等式表示的平面区域如图所示阴影部分, 当直线过直线与直线的交点时,目标函数取得最大,即,即,而故答案为【答案点睛】本题主要考查了基本不等式在最值问题中的应用、简单的线性规划,以及利用几何意义求最值,属于基础题15、【答案解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可.【题目详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形

12、,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:故答案为:【答案点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意16、【答案解析】由可得集合是奇数集,由此可以得出结果.【题目详解】解:因为所以集合中的元素为奇数,所以.【答案点睛】本题考查了集合的交集,解析出集合B中元素的性质是本题解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(II)最大值为,最小值为.【答案解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键

13、是处理好与角的关系过点作与垂直的直线,垂足为,则在中,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理试题解析:(I)曲线C的参数方程为(为参数)直线的普通方程为(II)曲线C上任意一点到的距离为则其中为锐角,且当时,取到最大值,最大值为当时,取到最小值,最小值为【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形18、(1)见解析;(2)【答案解析】(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【题目详解】(1)证明:因为,所以,所以,从而,因为,所以,故数

14、列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【答案点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,属于中档题.19、(1)(2)11【答案解析】(1)利用二倍角公式将式子化简成,再利用两角和与差的余弦公式即可求解.(2)利用余弦定理可得,再将平方,利用向量数量积可得,从而可求周长.【题目详解】由题 解得,所以由余弦定理,再由解得:所以故的周长为【答案点睛】本题主要考查了余弦定理解三角形、两角和与差的余弦公式、需熟记公式,属于基础题.20、(1);(2)2【答案解析】(1)首先利用对圆C的参数方程(为参数)进行消参数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2