收藏 分享(赏)

2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc

上传人:la****1 文档编号:18342 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.85MB
下载 相关 举报
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届天津市滨海新区高考全国统考预测密卷数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知命题,则是( )A,B,.C,D,.2连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD3设为锐角,若,则的值为( )AB C D4若,则的虚部是( )ABCD5已知等差

2、数列满足,公差,且成等比数列,则A1B2C3D46已知函数在上有两个零点,则的取值范围是( )ABCD7将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )ABCD8如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D上述三种情况都有可能9已知集合,则=ABCD10已知双曲线的一条渐近线倾斜角为,则( )A3BCD11已知复数z,则复数z的虚部为( )ABCiDi12椭圆的焦点为,点在椭圆上,若,则的大小

3、为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为_14如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为_.15在中,是的角平分线,设,则实数的取值范围是_.16已知实数,满足,则目标函数的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且(1

4、)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值18(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.19(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆已知曲线上的点M对应的参数,射线与曲线交于点(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值20(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,使.21(12分)已知函数.若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若a,且a0,证明:函数有局部对称点

5、;(2)若函数在定义域内有局部对称点,求实数c的取值范围;(3)若函数在R上有局部对称点,求实数m的取值范围.22(10分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据全称命题的否定为特称命题,得到结果.【题目详解】根据全称命题的否定为特称命题,可得,本题正确选项:【答案点睛】本题考查含量词的命题的否定,属于基础题.2、D【答案解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成

6、正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【题目详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【答案点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.3、D【答案解析】用诱导公式和二倍角公式计算【题目详解】故选:D【答案点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系4、D【答案解析】通过复数的乘除运算法则化简求解

7、复数为:的形式,即可得到复数的虚部.【题目详解】由题可知,所以的虚部是1.故选:D.【答案点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.5、D【答案解析】先用公差表示出,结合等比数列求出.【题目详解】,因为成等比数列,所以,解得.【答案点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.6、C【答案解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【题目详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只

8、需即可,解得.综上,的取值范围是.故选C.【答案点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题7、B【答案解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B8、B【答案解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【题目详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【答案点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题9、C【答案解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法

9、,利用数形结合的思想解题【题目详解】由题意得,则故选C【答案点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分10、D【答案解析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【题目详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,解得:.故选:.【答案点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.11、B【答案解析】利用复数的运算法则、虚部的定义即可得出【题目详解】,则复数z的虚部为.故选:B.【答案点睛】本题考查了复数的运算法

10、则、虚部的定义,考查了推理能力与计算能力,属于基础题.12、C【答案解析】根据椭圆的定义可得,再利用余弦定理即可得到结论.【题目详解】由题意,又,则,由余弦定理可得.故.故选:C.【答案点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【答案解析】先求圆的半径, 四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率【题目详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线

11、的距离,此时,因为,所以,所以的概率为【答案点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.14、1【答案解析】由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积【题目详解】如图,作,交于,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:故答案为:1【答案点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量15、【答案解析】设,由,用面积公式表示面积可得到,利用,即得解.【题目详解】设,由得:,化简得,由于,故.故答案为:【答案点睛】本题考查

12、了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.16、-1【答案解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值【题目详解】作出实数x,y满足对应的平面区域如图阴影所示;由zx+2y1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小由,得A(1,1),此时z的最小值为z1211,故答案为1【答案点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】(1)根据菱形的特征和题中

13、条件得到平面,结合线面垂直的定义和判定定理即可证明;2建立空间直角坐标系,利用向量知识求解即可【题目详解】(1)证明:四边形是菱形, 平面平面,又是的中点,又平面(2)直线与平面所成的角等于直线与平面所成的角平面,直线与平面所成的角为,即因为,则在等腰直角三角形中,所以在中,由得,以为原点,分别以为轴建立空间直角坐标系则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出)【答案点睛】本题主要考查了线面垂直的判定以及

14、二面角的求解,属于中档题18、 (1);(2).【答案解析】(1)通过讨论的范围,分为,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【题目详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以 综上所述,不等式解集为. (2)由,得,当时,恒成立,所以; 当时,. 因为当且仅当即或时,等号成立,所以;综上的取值范围是.【答案点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.19、(1)(2)【答案解析】(1)先求解a,b,消去参数,即得曲

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2