收藏 分享(赏)

2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc

上传人:g****t 文档编号:18460 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.76MB
下载 相关 举报
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第1页
第1页 / 共19页
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第2页
第2页 / 共19页
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第3页
第3页 / 共19页
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第4页
第4页 / 共19页
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第5页
第5页 / 共19页
2023届湖北省汉阳一中高考仿真模拟数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D2在中,点D是线段BC上任意一点,则( )AB-2

2、CD23下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D34已知函数,且,则( )A3B3或7C5D5或85刘徽是我国魏晋时期伟大的数学家,他在九章算术中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为( )ABCD6若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD7记递增数列的前项和为.若,且对中的任意两项

3、与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD8已知各项都为正的等差数列中,若,成等比数列,则( )ABCD9若2m2n1,则( )ABmn1Cln(mn)0D10椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )ABCD11已知集合AxN|x28x,B2,3,6,C2,3,7,则( )A2,3,4,5B2,3,4,5,6C1,

4、2,3,4,5,6D1,3,4,5,6,712在的展开式中,的系数为( )A-120B120C-15D15二、填空题:本题共4小题,每小题5分,共20分。13函数在上的最小值和最大值分别是_14在中,内角的对边长分别为,已知,且,则_15若,则_.16设为锐角,若,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知在中,角、的对边分别为,.(1)若,求的值;(2)若,求的面积.18(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.求椭圆的标准方程;若,求的值;设直线

5、, 的斜率分别为, ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.19(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.()求证:平面平面; ()若,求二面角的余弦值.20(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.21(12分)下表是某公司2018年512月份研发费用(百万元)和产品销量(万台)的具体数据:月 份56789101112研发费用(百万元)2361021131518产品销量(万台)1122.563.53.54.5()根据数据可知与之间存在线性相关关系,求出与的线性回归方程(系数精确到0.01)

6、;()该公司制定了如下奖励制度:以(单位:万台)表示日销售,当时,不设奖;当时,每位员工每日奖励200元;当时,每位员工每日奖励300元;当时,每位员工每日奖励400元.现已知该公司某月份日销售(万台)服从正态分布(其中是2018年5-12月产品销售平均数的二十分之一),请你估计每位员工该月(按30天计算)获得奖励金额总数大约多少元. 参考数据:,参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则,.22(10分)已知函数,设为的导数,(1)求,; (2)猜想的表达式,并证明你的结论2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小

7、题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目详解】解:因为,所以因为所以,即,时故选:【答案点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.2、A【答案解析】设,用表示出,求出的值即可得出答案.【题目详解】设由,.故选:A【答案点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.3、C【答案解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题

8、判,利用两直线平行的条件容易判断正确.【题目详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【答案点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可4、B【答案解析】根据函数的对称轴以

9、及函数值,可得结果.【题目详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【答案点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题5、C【答案解析】首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【题目详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【答案点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.6、C【答案解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【题目详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离

10、等于1,即,所以,.故选:C.【答案点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.7、D【答案解析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【题目详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【答案点睛】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题8、A【答案解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.9、B【答案解析】根据指数函数的单

11、调性,结合特殊值进行辨析.【题目详解】若2m2n120,mn0,mn01,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B【答案点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.10、C【答案解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【题目详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【答

12、案点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.11、C【答案解析】根据集合的并集、补集的概念,可得结果.【题目详解】集合AxN|x28xxN|0x8,所以集合A1,2,3,4,5,6,7B2,3,6,C2,3,7,故1,4,5,6,所以1,2,3,4,5,6.故选:C.【答案点睛】本题考查的是集合并集,补集的概念,属基础题.12、C【答案解析】写出展开式的通项公式,令,即,则可求系数【题目详解】的展开式的通项公式为,令,即时,系数为故选C【答案点睛】本题考查二项式展开的通项公式,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】求导,研究函数单调性,分析,

13、即得解【题目详解】由题意得,令,解得,令,解得.在上递减,在递增,而,故在区间上的最小值和最大值分别是故答案为:【答案点睛】本题考查了导数在函数最值的求解中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题14、4【答案解析】根据正弦定理与余弦定理可得:,即故答案为415、【答案解析】直接利用关系式求出函数的被积函数的原函数,进一步求出的值【题目详解】解:若,则,即,所以故答案为:【答案点睛】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题16、【答案解析】为锐角,故.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)7(2)14【答案解析】(1)在中,可得 ,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【题目详解】(1)在中,.(2),解得,.【答案点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.18、(1)(2) (3)【答案解析】试题分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2