1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足,则( )ABCD2设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD3已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件
2、4易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD5函数的定义域为,集合,则( )ABCD6设等差数列的前n项和为,且,则( )A9B12CD7若集合,则( )ABCD8设,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9已知复数和复数,则为ABCD10设,满足,则的取值范围是( )ABCD11过抛物线的焦点作直线交抛物线于两点,若线段中点的
3、横坐标为3,且,则抛物线的方程是( )ABCD12如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关二、填空题:本题共4小题,每小题5分,共20分。13甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是_14如图,在矩形中,为边的中点,分别以、为圆心,为半径作圆弧、(在线段上).由两圆弧、及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .15在的二项展开式中,只有第5项的二项式系数最大
4、,则该二项展开式中的常数项等于_.16如图,在平行四边形中,,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的离心率为,且过点()求椭圆的方程;()设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值18(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.19(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩
5、作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.
6、21(12分)已知ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面积22(10分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖
7、励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用复数模与除法运算即可得到结果.【题目详解】解: ,故选:C【答案点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.2、C【答案解析】根据线面平行或垂直的有
8、关定理逐一判断即可.【题目详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【答案点睛】考查线面平行或垂直的判断,基础题.3、A【答案解析】向量,则,即,或者-1,判断出即可【题目详解】解:向量,则,即,或者-1,所以是或者的充分不必要条件,故选:A【答案点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.4、C【答案解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的
9、情况,由此可求解出对应的概率.【题目详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【答案点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.5、A【答案解析】根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【题目详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【答案点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.6、A【答案解析】由,可得以及,而,代入即可得到答案.【题目详
10、解】设公差为d,则解得,所以.故选:A.【答案点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.7、A【答案解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【题目详解】解:由集合,解得,则故选:【答案点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题8、A【答案解析】根据题意得到充分性,验证得出不必要,得到答案.【题目详解】,当时,充分性;当,取,验证成立,故不必要.故选:.【答案点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9、C【答案解析】利用复数的三角形式的乘法运算法则即可得出【题目详解】z1
11、z2(cos23+isin23)(cos37+isin37)cos60+isin60故答案为C【答案点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.10、C【答案解析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围是.故选:D.【答案点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.11、B【答案解析】利用抛物线的定
12、义可得,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【题目详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,可得,所以抛物线方程为.故选:B.【答案点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.12、B【答案解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:
13、B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【题目详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【答案点睛】本题考查独立事件概率的求解问题,属于基础题.14、【答案解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.15、1【答案解析】由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值【题目详解】的二项展开式的中,只有第5项的二项式系数最大,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16、【答案解析】根据ABCD是平行四边形可得出,然后代入AB2,AD1即可求出的值【题目详解】AB2,AD1, 141故答案为:1【答案点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查