收藏 分享(赏)

2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc

上传人:la****1 文档编号:18508 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.17MB
下载 相关 举报
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第1页
第1页 / 共22页
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第2页
第2页 / 共22页
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第3页
第3页 / 共22页
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第4页
第4页 / 共22页
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第5页
第5页 / 共22页
2023届湖南省长沙市开福区第一中学高考仿真卷数学试题(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1元代数学家朱世杰的数学名著算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的(

2、 )A3B4C5D62设函数定义域为全体实数,令有以下6个论断:是奇函数时,是奇函数;是偶函数时,是奇函数;是偶函数时,是偶函数;是奇函数时,是偶函数是偶函数;对任意的实数,那么正确论断的编号是( )ABCD3一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD4已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD5已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为( )AB3CD6已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D277正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2

3、CD8若,则( )ABCD9已知x,y满足不等式组,则点所在区域的面积是( )A1B2CD10已知倾斜角为的直线与直线垂直,则( )ABCD11上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500

4、.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )A公元前2000年到公元元年B公元前4000年到公元前2000年C公元前6000年到公元前4000年D早于公元前6000年12的展开式中有理项有( )A项B项C项D项二、填空题:本题共4小题,每小题5分,共20分。13设函数,若在上的最大值为,则_.14若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是_15如图所示,平面BCC1B1平面ABC,ABC120,四边形BCC1B1为正方形,且ABBC2,则异面直线BC1与AC所成

5、角的余弦值为_16已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数 .(1)若在 处导数相等,证明: ;(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.18(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,(1)证明:直线的斜率是1;(2)若,成等比数列,求直线的方程.19(12分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的

6、方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.20(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点 (1)求证:平面; (2)求二面角的正切值21(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.22(10分)已知函数,.(1)当时,求函数在点处的切线方程;比较与的大小; (2)当时,若对时,且有唯一零点,证明:2023学

7、年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).2、A【答

8、案解析】根据函数奇偶性的定义即可判断函数的奇偶性并证明.【题目详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,此时,故错误;故正确.故选:A【答案点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.3、B【答案解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【题目详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【答案点睛】本题主要考查正负角的定义以及弧度制,属于基础题.4、C【答案解析】

9、试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质5、B【答案解析】设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率【题目详解】,设,则,两式相减得,故选:B【答案点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系6、D【答案解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根

10、据勾股定理求出外接球的半径,利用球的体积公式即可求解.【题目详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【答案点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.7、D【答案解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【题目详解】由题意,正项等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【答案点睛

11、】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题8、B【答案解析】由三角函数的诱导公式和倍角公式化简即可.【题目详解】因为,由诱导公式得,所以 .故选B【答案点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.9、C【答案解析】画出不等式表示的平面区域,计算面积即可.【题目详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,所以阴影部分面积.故选:C.【答案点睛】本题考查不等式组表示的平面区域面积的求法

12、,考查数形结合思想和运算能力,属于常考题.10、D【答案解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【题目详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【答案点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.11、D【答案解析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项【题目详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交

13、角,将图3近似画出如下平面几何图形:则,估计该骨笛的大致年代早于公元前6000年故选:【答案点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题12、B【答案解析】由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【题目详解】,当,时,为有理项,共项.故选:B.【答案点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【题目详解】

14、解:定义域为,在上单调递增,故在上的最大值为故答案为:【答案点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.14、【答案解析】由题意得出展开式中共有11项,;再令求得展开式中各项的系数和【题目详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:故答案为:1【答案点睛】本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.15、【答案解析】将平移到和相交的位置,解三角形求得线线角的余弦值.【题目详解】过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,故.【答案点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2