1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD2根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,
2、则甲,乙两位专家派遣至同一县区的概率为()ABCD3如果实数满足条件,那么的最大值为( )ABCD4已知向量满足,且与的夹角为,则( )ABCD5已知,则的值等于( )ABCD6在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限7根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD8已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( )A第一象限B第二象限C第三象限D第四象限9已知函数,若关于的不等式恰有1个整数解,则实数的最大值为( )A2B3C5D810函数的图象如图所示,则它的解析式可能是( )ABCD11已
3、知F为抛物线y24x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则|FA|FB|的值等于()AB8CD412设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项满足,则_.14一个算法的伪代码如图所示,执行此算法,最后输出的T的值为_.15已知函数函数,则不等式的解集为_16若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在
4、轴异侧)满足,且的周长为,求的值.18(12分)已知的内角、的对边分别为、,满足.有三个条件:;.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.19(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中
5、使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?20(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2
6、件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.21(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,湖面上的点在线段上,且,均与圆相切,切点分别为,其中栈道,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.22(10分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满
7、分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.0242023学年模拟测试卷参考答案(含详细解析)一、选择题:本
8、题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【答案点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键2、A【答案解析】每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【题目详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,
9、乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【答案点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.3、B【答案解析】解:当直线过点时,最大,故选B4、A【答案解析】根据向量的运算法则展开后利用数量积的性质即可.【题目详解】.故选:A.【答案点睛】本题主要考查数量积的运算,属于基础题.5、A【答案解析】由余弦公式的二倍角可得,再由诱导公式有,所以【题目详解】由余弦公式的二倍角展开式有又故选:A【答案点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题6、D【答案解析】将复数化简得
10、,即可得到对应的点为,即可得出结果.【题目详解】,对应的点位于第四象限.故选:.【答案点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.7、C【答案解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【答案点睛】本题考查程序框图,是基础题8、D【答案解析】根据复数运算,求得,再求其对应点即可判断.【题目详解】,故其对应点的坐标为.其位于第四象限.故选:D.【答案点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.9、D【答案解析】画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【题目详解】解:函数,如图所示当
11、时,由于关于的不等式恰有1个整数解因此其整数解为3,又,则当时,则不满足题意;当时,当时,没有整数解当时,至少有两个整数解综上,实数的最大值为故选:D【答案点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.10、B【答案解析】根据定义域排除,求出的值,可以排除,考虑排除.【题目详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函数图象特征.故选:B【答案点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.11、C【答案解析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的
12、值【题目详解】F(1,0),故直线AB的方程为yx1,联立方程组,可得x26x+10,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x26,x1x21由抛物线的定义可知:|FA|x1+1,|FB|x2+1,|FA|FB|x1x2|故选C【答案点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题12、A【答案解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,在上有且仅有5个零点,.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
13、由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法【题目详解】,时,得,又,()故答案为:【答案点睛】本题考查求数列通项公式,由已知条件类比已知求的解题方法求解14、【答案解析】由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【题目详解】根据题中的程序框图可得:,执行循环体,不满足条件,执行循环体,此时,满足条件,退出循环,输出的值为.故答案为:【答案点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.15、【答案解析】,所以,所以的解集为。点睛:本题考查绝对值不等式。本题先对绝对值函数进行分段处理,再得到的解析式,求得的分段函数解析式,再解不等式即可。绝对值函数一般都去绝对值转化为分段函数处理。16、2【答案解析】由题得,再根据求解即可.【题目详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【答案点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【题目详解】