1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )ABCD2某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A1B2C3D03将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得
2、到的两个图象重合,则的最小值为( )ABCD4已知,若,则正数可以为( )A4B23C8D175已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD6在中,则边上的高为( )AB2CD7已知 若在定义域上恒成立,则的取值范围是( )ABCD8复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD9设全集U=R,集合,则( )Ax|-1 x4Bx|-4x0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x1于M,N两点.(1)若|MN|2,求抛物线E的方程;(2)若0p1,抛物线E与圆(x5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐
3、标原点,求直线OG斜率的取值范围.21(12分)在中,是边上一点,且,.(1)求的长;(2)若的面积为14,求的长.22(10分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围【题
4、目详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【答案点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题2、C【答案解析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【题目详解】由三视图还原原几何体如图,其中,为直角三角形.该三棱锥的表面中直角三角形的个数为3.故选:C.【答案点睛】本小题主要考查由三视图还原为原图,属于基础题.3、B【答案解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得
5、结果.【题目详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【答案点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.4、C【答案解析】首先根据对数函数的性质求出的取值范围,再代入验证即可;【题目详解】解:,当时,满足,实数可以为8.故选:C【答案点睛】本题考查对数函数的性质的应用,属于基础题.5、C【答案解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【题目详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角
6、三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【答案点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.6、C【答案解析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【题目详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【答案点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.7、C【答案解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解
7、得实数的取值范围.【题目详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.8、A【答案解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【题目详解】由于复数对应复平面上的点,则,因此,.故选:A.【答案点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复
8、数以及复数的除法,考查计算能力,属于基础题.9、C【答案解析】解一元二次不等式求得集合,由此求得【题目详解】由,解得或.因为或,所以.故选:C【答案点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.10、D【答案解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【题目详解】解:,又解得,所以故选:D【答案点睛】本题考查了平面向量的基本定理及其意义,属于基础题11、D【答案解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间
9、的关系去寻找函数的解析式要满足的关系. 12、D【答案解析】利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【题目详解】,故选:D.【答案点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【题目详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面
10、体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【答案点睛】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.14、13【答案解析】由导函数的应用得:设,所以,又,所以,即,由二项式定理:令得:,再由,求出,从而得到的值;【题目详解】解:设,所以,又,所以,即,取得:,又,所以,故,故答案为:13【答案点睛】本题考查了导函数的应用、二项式定理,属于中档题15、1【答案解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结
11、合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.16、.【答案解析】设三棱锥的外接球为球,分别取、的中点、,先确定球心在线段和中点的连线上,先求出球的半径的值,然后利用勾股定理求出的值,于是得出,再利用勾股定理求出点在上底面轨迹圆的半径长,最后利用圆的面积公式可求出答案【题目详解】如图所示,设三棱锥的外接球为球,分别取、的中点、,则点在线段上,由于正方体的棱长为2,则的外接圆的半径为,设球的半径为,则,解得.所以,则而点在上底面所形成的轨迹是以为圆心的圆,由于,所以,因此,点所构成的图形的面积为.【答案点睛】本题考查三棱锥的
12、外接球的相关问题,根据立体几何中的线段关系求动点的轨迹,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】(1)当时,将原不等式化简后两边平方,由此解出不等式的解集.(2)对分成三种情况,利用零点分段法去绝对值,将表示为分段函数的形式,根据单调性求得的取值范围.【题目详解】(1)时,可得,即,化简得:,所以不等式的解集为.(2)当时,由函数单调性可得,解得;当时,所以符合题意;当时,由函数单调性可得,解得综上,实数的取值范围为【答案点睛】本小题主要考查含有绝对值不等式的解法,考查不等式恒成立问题的求解,属于中档题.18、(1);(2).【答案解析】(1)分别取的中点为,易得两两垂直,以所在直线为轴建立空间直角坐标系,易得为平面的法向量,只需求出平面的法向量为,再利用计算即可;(2)求出,利用计算即可.【题目详解】(1)分别