收藏 分享(赏)

云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc

上传人:sc****y 文档编号:18764 上传时间:2023-01-06 格式:DOC 页数:21 大小:1.93MB
下载 相关 举报
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第1页
第1页 / 共21页
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第2页
第2页 / 共21页
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第3页
第3页 / 共21页
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第4页
第4页 / 共21页
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第5页
第5页 / 共21页
云南省楚雄彝族自治州民族中学2023学年高考数学三模试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1集合中含有的元素个数为( )A4B6C8D122a为正实数,i为虚数单位,则a=( )A2BCD1

2、3已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD14在直角梯形中,点为上一点,且,当的值最大时,( )AB2CD5已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD6如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD7在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD8已知双曲线的右焦点为,过的直线

3、交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD9已知复数,为的共轭复数,则( )ABCD10设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD11已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )ABCD12执行如图所示的程序框图,若输入,则输出的值为( )A0B1CD二、填空题:本题共4小题,每小题5分,共20分。13已知全集为R,集合,则_.14已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.15有以下四个

4、命题:在中,的充要条件是;函数在区间上存在零点的充要条件是;对于函数,若,则必不是奇函数;函数与的图象关于直线对称.其中正确命题的序号为_.16数列的前项和为,数列的前项和为,满足,且.若任意,成立,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,

5、调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?18(12分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EFAB,BAF90,AD2,ABAF2EF2,点P在棱DF上(1)若P是DF的中点,求异面直线BE与CP所成

6、角的余弦值;(2)若二面角DAPC的正弦值为,求PF的长度19(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.20(12分)已知数列是等差数列,前项和为,且,(1)求(2)设,求数列的前项和21(12分)在数列中,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值22(10分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】解:因为集合中

7、的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B2、B【答案解析】,选B.3、B【答案解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【题目详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以

8、,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【答案点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.4、B【答案解析】由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【题目详解】由题意,直角梯形中,可求得,所以点在线段上, 设 , 则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【答案点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.5、D【

9、答案解析】根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【答案点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.6、C【答案解析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,解得,故选:C【答案点睛】本题考

10、查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.7、B【答案解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【题目详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【答案点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.8、B【答案解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【题目详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线

11、l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【答案点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题9、C【答案解析】求出,直接由复数的代数形式的乘除运算化简复数.【题目详解】.故选:C【答案点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.10、D【答案解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【题目详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【答案点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.11、B【答案解析】根据三

12、角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【题目详解】函数 则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即 故答案为:B.【答案点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.12、A【答案解析】根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,因为,所以由程序框图知,输出的值为.故选:A【答案点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答

13、案解析】先化简集合A,再求AB得解.【题目详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【答案点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、1【答案解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【题目详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1【答案点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键15、【答案解析】由三角形的正弦定理和边角关系可判断;由零点存在定理和二次函数的图象可判断;由,结合奇函数的定义,可判断;由函数图象对称的特点可判断【题目详解】解:在中,故正确;函数在区间上存在零点,比如在存在零点,但是,故错误;对于函数,若,满足,但可能为奇函数,故错误; 函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故错误故答案为:【答案点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题16、【答案解析】当时,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解【题目详解】解:当时,则,当时,(当且仅当时等号成立),故答案为:【答

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2