1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( )ABCD2已知中,则
2、( )A1BCD3已知复数满足:(为虚数单位),则( )ABCD4从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为ABCD5若为过椭圆中心的弦,为椭圆的焦点,则面积的最大值为( )A20B30C50D606已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD27已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD8函数()的图象的大致形状是( )ABCD9已知,其中是虚数单位,则对应的点的坐标为( )ABCD10已知向量,则向量与的夹角为
3、( )ABCD11已知集合,则元素个数为( )A1B2C3D412已知数列,是首项为8,公比为得等比数列,则等于( )A64B32C2D4二、填空题:本题共4小题,每小题5分,共20分。13若函数在和上均单调递增,则实数的取值范围为_14从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为_.15已知数列的前项和为,且满足,则_16已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)求函数的最大值18(12分)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)
4、写出曲线的极坐标方程;(2)点是曲线上的一点,试判断点与曲线的位置关系19(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均
5、值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?20(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.21(12分)设函数,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.22(10分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,
6、直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【题目详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【答案点睛】本题考查导数在判断函数单
7、调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.2、C【答案解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【题目详解】,.故选:C.【答案点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.3、A【答案解析】利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【题目详解】由,则,所以.故选:A【答案点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.4、C【答案解析】由题可得,解得,则,所以这部分男生的身高的中位数的估计值为,故选C5、D【答案解析】先设A点的坐标为,根据对称性可得,在
8、表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【题目详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D. 【答案点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.6、D【答案解析】根据抛物线的定义求得,由此求得的长.【题目详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【答案点睛】
9、本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.7、D【答案解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和8、C【答案解析】对x分类讨论,去掉绝对值,即可作出图象.【题目详解】 故选C【答案点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题9、C【答案解析】利用复数相等的条件求得,则答案
10、可求【题目详解】由,得,对应的点的坐标为,故选:【答案点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题10、C【答案解析】求出,进而可求,即能求出向量夹角.【题目详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【答案点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.11、B【答案解析】作出两集合所表示的点的图象,可得选项.【题目详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,
11、所以元素个数为2,故选:B.【答案点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.12、A【答案解析】根据题意依次计算得到答案.【题目详解】根据题意知:,故,.故选:.【答案点睛】本题考查了数列值的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可【题目详解】由知,当时,在和上单调递增,在和上均单调递增,的取值范围为:故答案为:【答案点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档
12、题14、【答案解析】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法,从甲、乙、丙、丁、戊五人中任选两名共有种方法,根据公式即可求得概率.【题目详解】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法, 从甲、乙、丙、丁、戊五人中任选两名共有种方法,.故答案为:.【答案点睛】本题考查古典概型的概率的计算,考查学生分析问题的能力,难度容易.15、【答案解析】对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【题目详解】解:,可得时,时,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得【答案点睛】本小题主要考查已知求,考查等比数列前项
13、和公式,属于中档题.16、2.【答案解析】由双曲线的一条渐近线为,解得求出双曲线的右焦点,利用点到直线的距离公式求解即可【题目详解】双曲线的一条渐近线为 解得: 双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【答案点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【答案解析】试题分析:由柯西不等式得试题解析:因为, 所以 等号当且仅当,即时成立所以的最大值为 考点:柯西不等式求最值18、(1)(2)点在曲线外【答案解析】(1)先消参化曲线的参数方程为普通方程,再化为极坐标方程;(2)
14、由点是曲线上的一点,利用的范围判断的范围,即可判断位置关系.【题目详解】(1)由曲线的参数方程为可得曲线的普通方程为,则曲线的极坐标方程为,即(2)由题,点是曲线上的一点,因为,所以,即,所以点在曲线外.【答案点睛】本题考查参数方程与普通方程的转化,考查直角坐标方程与极坐标方程的转化,考查点与圆的位置关系.19、(1)6种;(2);(3).【答案解析】(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【题目详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条. (2)小明途中恰好经过处,共有4条路线:当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走