1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )ABCD12已知,满足约束条件,则的最大值为ABCD3已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐
2、近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )AB2CD4如图,在圆锥SO中,AB,CD为底面圆的两条直径,ABCDO,且ABCD,SOOB3,SE.,异面直线SC与OE所成角的正切值为( )ABCD5已知F为抛物线y24x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则|FA|FB|的值等于()AB8CD46已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD7如图,正方体中,分别为棱、的中点,则下列各直线中,不与平面平行的是( )A直线B直线C直线D直线8已知向量,=(1,),且在方向上
3、的投影为,则等于( )A2B1CD09已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为ABCD10函数的图象在点处的切线为,则在轴上的截距为( )ABCD11已知为定义在上的偶函数,当时,则( )ABCD12如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13满足约束条件的目标函数的最小值是 . 14已知,满足约束条件则的最小值为_.15已知复数满足(为虚数单位),则复数的实部为_.16已知是函数的极大值点,则的取值范围是_三、解答题:共70分。解答应写出文字说
4、明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.18(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.19(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.20(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求
5、实数a的取值范围.21(12分)求函数的最大值22(10分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.【题目详解】解:当
6、 时,则;当时,则.设 为函数图像上的两点,当 或时,不符合题意,故.则在 处的切线方程为;在 处的切线方程为.由两切线重合可知 ,整理得.不妨设则 ,由 可得则当时, 的最大值为.则在 上单调递减,则.故选:B.【答案点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.2、D【答案解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【题目详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【答
7、案点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法3、C【答案解析】计算得到,代入双曲线化简得到答案.【题目详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,故,故,代入双曲线化简得到:,故.故选:.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.4、D【答案解析】可过点S作SFOE,交AB于点F,并连接CF,从而可得出CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tanCSF的值.【题目详解】如图,过点S作SFOE,交AB于点F,连接CF,则CSF(或补角)即为异面
8、直线SC与OE所成的角,又OB3,SOOC,SOOC3,;SOOF,SO3,OF1,;OCOF,OC3,OF1,等腰SCF中,.故选:D.【答案点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.5、C【答案解析】将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值【题目详解】F(1,0),故直线AB的方程为yx1,联立方程组,可得x26x+10,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x26,x1x21由抛物线的定义可知:|FA|x1+1,|FB|x2+1,|FA|FB|x1x2|
9、故选C【答案点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题6、A【答案解析】设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【题目详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【答案点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.7、C【答案解析】充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与 相交,判断C的正误.根据,判断D的正误
10、.【题目详解】在正方体中,因为 ,所以 平面,故A正确. 因为,所以,所以平面 故B正确.因为,所以平面,故D正确.因为与 相交,所以 与平面 相交,故C错误.故选:C【答案点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.8、B【答案解析】先求出,再利用投影公式求解即可.【题目详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【答案点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.9、B【答案解析】双曲线的渐近线方程为,由题可知设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B10、A【答案解析】求出函数在
11、处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【答案点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.11、D【答案解析】判断,利用函数的奇偶性代入计算得到答案.【题目详解】,故选:【答案点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.12、B【答案解析】连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解【题目详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四
12、边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【答案点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、-2【答案解析】可行域是如图的菱形ABCD,代入计算,知为最小.14、【答案解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【题目详解】画出可行域如下图所示,由图可知:可行域是由三点,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【答案点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方
13、法,属于基础题.15、【答案解析】利用复数的概念与复数的除法运算计算即可得到答案.【题目详解】,所以复数的实部为2.故答案为:2【答案点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.16、【答案解析】方法一:令,则,当,时,单调递减,时,且,在上单调递增,时,且,在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
14、17、(1);(2)【答案解析】(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【题目详解】(1)由题意得:,:因为曲线和相切,所以,即:;(2)设,所以所以当时,面积最大值为【答案点睛】本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.18、(1)证明见解析;(2)【答案解析】(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的