收藏 分享(赏)

北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc

上传人:la****1 文档编号:21126 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.69MB
下载 相关 举报
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第1页
第1页 / 共18页
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第2页
第2页 / 共18页
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第3页
第3页 / 共18页
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第4页
第4页 / 共18页
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第5页
第5页 / 共18页
北京市西城区鲁迅中学2023学年高考仿真模拟数学试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D62一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红

2、球数为,则( )A,B,C,D,3已知复数z满足,则z的虚部为( )ABiC1D14已知实数满足约束条件,则的最小值是ABC1D45过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )ABCD6已知,则等于( )ABCD7已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,则D若,且,则8设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )ABC5D69已知,则( )ABCD10在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )A第一象限B

3、第二象限C第三象限D第四象限11已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 12将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为_.14已知,满足约束条件,则的最小值为_15若变

4、量x,y满足:,且满足,则参数t的取值范围为_.16直线是曲线的一条切线为自然对数的底数),则实数_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元

5、;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.18(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,满足,求的最小值.19(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.20(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的

6、最小值,并求此时四边形的面积.21(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.22(10分)已知函数,.(1)讨论的单调性;(2)当时,证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【题目详解】a0,b0,a+b=1,当且仅当时取“”号答案:C【答案点睛】本题考查

7、基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.2、B【答案解析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【题目详解】可能的取值为;可能的取值为,故,.,故,,故,.故选B.【答案点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.3

8、、C【答案解析】利用复数的四则运算可得,即可得答案.【题目详解】,复数的虚部为.故选:C.【答案点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.4、B【答案解析】作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B5、D【答案解析】求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、的齐次等式,进而可求得椭圆的离心率.【题目详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【答案点睛】本题考查椭圆离心

9、率的求解,解答的关键就是要得出、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.6、B【答案解析】由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【题目详解】由题意得 ,又,所以,结合解得,所以 ,故选B.【答案点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.7、D【答案解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【题目详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,

10、由可得,又,则故正确故选:【答案点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断8、A【答案解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【题目详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为

11、:,即,所以的面积为:.故选:A【答案点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.9、D【答案解析】令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【题目详解】时,令,求导,故单调递增:,当,设, ,又,即,故.故选:D【答案点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.10、D【答案解析】将复数化简得,即可得到对应的点为,即可得出结果.【题目详解】,对应的点位于第四象限.故选:.【答案点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易

12、.11、D【答案解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【题目详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【答案点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练12、B【答案解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法

13、可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【题目详解】是抛物线准线上的一点 抛物线方程为 ,准线方程为过作准线的垂线,垂足为,则 设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得: 或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【答案点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.14、2【答案解析】作出可行域,平移基准直线到处,求得的最小值.【题目详解】画出可行域如下图所示,由图可知平移

14、基准直线到处时,取得最小值为.故答案为:【答案点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.15、【答案解析】根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【题目详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【答案点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.16、【答案解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【题目详解】,则,所以切点为,故切线为,即,故.故答案为:【答案点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2