1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A16B12C8D62设,则,三数的大小关系是ABCD3已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-24函数的图象在点处的切线为,则在轴上的截距为( )ABCD5如图是一个几何体的三视图,则该几何体的体积为()ABCD6在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D7下列四个图象可能是函数图象的是( )ABCD8幻方最早起源于我国,由正整数1,2,3,这个数填入方
3、格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50509设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD10已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )ABCD11在中,内角的平分线交边于点,则的面积是( )ABCD12已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为( )ABCD二、填空题:
4、本题共4小题,每小题5分,共20分。13在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为_14已知函数为上的奇函数,满足.则不等式的解集为_.15已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_.16函数f(x)x2xlnx的图象在x1处的切线方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.18(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线
5、相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.19(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.20(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点. (I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.21(12分)在数列中,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值22(1
6、0分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【题目详解】由题可知:该几何体的底面正三角形的边长为2所
7、以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【答案点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.2、C【答案解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【题目详解】由,所以有.选C.【答案点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.3、D【答案解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O
8、在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【答案点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.4、A【答案解析】求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【答案点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.5、A【答案解析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【题目详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,高
9、为.该几何体的体积为故选:A.【答案点睛】本题考查三视图及棱柱的体积,属于基础题.6、B【答案解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目详解】解:因为,所以因为所以,即,时故选:【答案点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.7、C【答案解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【题目详解】的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.
10、当时,B项不正确.故选:C【答案点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.8、C【答案解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【题目详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【答案点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.9、D【答案解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步
11、不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【题目详解】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【答案点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.10、B【答案解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【题目详解】由题意,双
12、曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【答案点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题11、B【答案解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理
13、和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.12、B【答案解析】令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【题目详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,解得.故选:B.【答案点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算
14、出切点到直线的距离即可所求答案.【题目详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【答案点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.14、【答案解析】构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【题目详解】设,则,设,则.当时,此时函数单调递减;当时,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,