1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )ABCD2如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的
2、最大值为( )A12BCD3在的展开式中,的系数为( )A-120B120C-15D154已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )ABC8D65为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强6,则与位置关系是 ()A平行B异面C相交D平行或异面或相交7已知抛物线y2=
3、 4x的焦点为F,抛物线上任意一点P,且PQy轴交y轴于点Q,则 的最小值为( )ABClD18已知函数在上单调递增,则的取值范围( )ABCD9函数与在上最多有n个交点,交点分别为(,n),则( )A7B8C9D1010已知复数,则( )ABCD11设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直D相交但不垂直12生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节
4、,“礼”和“乐”必须分开安排的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则的值为 _14已知,则展开式中的系数为_15已知数列的首项,函数在上有唯一零点,则数列|的前项和_.16若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,(单位:百米).(1)分别求,关于x的函数
5、关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.18(12分)在中,角A、B、C的对边分别为a、b、c,且. (1)求角A的大小;(2)若,的平分线与交于点D,与的外接圆交于点E(异于点A),求的值.19(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.20(12分)已知数列an满足条件,且an+2(1)n(an1)+2an+1,nN*()求数列an的通项公式;()设bn,
6、Sn为数列bn的前n项和,求证:Sn21(12分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.22(10分) 选修4 - 5:不等式选讲 已知都是正实数,且,求证: 2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【题目详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前
7、10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【答案点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题2、C【答案解析】过作于,连接,易知,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【题目详解】在和中,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【答案点睛】本题考查三棱锥
8、体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.3、C【答案解析】写出展开式的通项公式,令,即,则可求系数【题目详解】的展开式的通项公式为,令,即时,系数为故选C【答案点睛】本题考查二项式展开的通项公式,属基础题4、C【答案解析】由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【题目详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,设由椭圆的定义以及双曲线的定义可得:,则 当且仅当时,取等号.故选:C【答案点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.5、D【答案解析】根据所给的雷达图逐个选项分析即可.【题目详解】对于A
9、,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【答案点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.6、D【答案解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交选D7、A【答案解析】设点,则点,利用向量数量积的坐标运算可得,利用二
10、次函数的性质可得最值.【题目详解】解:设点,则点,当时,取最小值,最小值为.故选:A.【答案点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.8、B【答案解析】由,可得,结合在上单调递增,易得,即可求出的范围.【题目详解】由,可得,时,而,又在上单调递增,且,所以,则,即,故.故选:B.【答案点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.9、C【答案解析】根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【题目详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关
11、于对称所以故选:C【答案点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.10、B【答案解析】分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得 详解: ,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.11、C【答案解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系12、C【答案解析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考
12、虑限制因素,总数有种,进而得到结果.【题目详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有 当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为: 故答案为:C.【答案点睛】解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)二、填空题:本题共4小题,每小题5分,共20分。13、
13、4【答案解析】根据的正负值,代入对应的函数解析式求解即可.【题目详解】解:.故答案为:.【答案点睛】本题考查分段函数函数值的求解,是基础题.14【答案解析】由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数【题目详解】已知,则,它表示4个因式的乘积故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项故展开式中的系数故答案为:1【答案点睛】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题15、【答案解析】由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【题目详解】因为为偶函数,
14、在上有唯一零点,所以,为首项为2,公比为2的等比数列.所以,.故答案为:【答案点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.16、【答案解析】把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案【题目详解】,则,的共轭复数在复平面内对应点的坐标为,故答案为【答案点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.,.(2)当百米时,两条直道的长度之和取得最小值百米.【答案解析】(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.【题目详解】解:(1),是边长为3的