1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则为( )A0,2)B(2,3C2,3D(0,22某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:555759616864625980889
2、895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D123已知复数满足,则的最大值为( )ABCD64若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A6500元B7000元C7500元D8000元5已知复数满足,且,则( )A3BCD6
3、马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D67已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|1x2 D8已知定义在R上的偶函数满足,当时,函数(),则函数与函数的图象的所有交点的横坐标之和为( )A2B4C5D69生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里
4、的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )ABCD10已知三棱锥且平面,其外接球体积为( )ABCD11设,是非零向量.若,则( )ABCD12已知命题:使成立 则为( )A均成立B均成立C使成立D使成立二、填空题:本题共4小题,每小题5分,共20分。13九章算术第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一
5、件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有_人;所合买的物品价格为_元14平行四边形中,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为_.15已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为_16设随机变量服从正态分布,若,则的值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的
6、右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.18(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.19(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.20(12分)随着小
7、汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以上表得
8、到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.21(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为c
9、os(+)1(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M (2,0),若直线l与曲线C相交于P、Q两点,求的值22(10分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为(1)求椭圆的方程;(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则
10、,所以.故选:B.【答案点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.2、D【答案解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【题目详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【答案点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.3、B【答案解析】设,利用复数几何意义计算.【题目详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故.故选:B.【答案点睛】本题考查求复数模的最大值,其实本
11、题可以利用不等式来解决.4、D【答案解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【题目详解】设目前该教师的退休金为x元,则由题意得:600015%x10%1解得x2故选D【答案点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题5、C【答案解析】设,则,利用和求得,即可.【题目详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【答案点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.6、C【答案解析】模拟程序的运行即可求出答案【题目详解】解:模拟程序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循环体,p3,S7,输出S的值为
12、7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【答案点睛】本题主要考查程序框图,属于基础题7、B【答案解析】试题分析:由集合A中的函数,得到,解得:,集合,由集合B中的函数,得到,集合,则,故选B考点:交集及其运算8、B【答案解析】由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于
13、直线对称,则与的图像所有交点的横坐标之和为4得解.【题目详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【答案点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.9、C【答案解析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【题目详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情
14、况,由间接法得到满足条件的情况有 当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为: 故答案为:C.【答案点睛】解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)10、A【答案解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【题目详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【答案点睛】本题考查三棱锥的外接球体积,考查空间想象能力.11、D【答案解析】试题分析:由题意得:若,则;若,则