收藏 分享(赏)

2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc

上传人:sc****y 文档编号:35329 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.70MB
下载 相关 举报
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第1页
第1页 / 共18页
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第2页
第2页 / 共18页
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第3页
第3页 / 共18页
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第4页
第4页 / 共18页
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第5页
第5页 / 共18页
2023学年甘肃省张掖市甘州区张掖二中高考数学全真模拟密押卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数的导函数,且满足,若在中,则( )ABCD2已知展开式中第三项的二项式系数与第四项的二项式系

2、数相等,若,则的值为( )A1B1C8lD813已知曲线且过定点,若且,则的最小值为( ).AB9C5D4将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A18种B36种C54种D72种5若为过椭圆中心的弦,为椭圆的焦点,则面积的最大值为( )A20B30C50D606已知集合,则( )ABCD7关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为

3、( )ABCD8已知集合,则等于( )ABCD93本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )ABCD10已知数列的前项和为,且,则( )ABCD11在条件下,目标函数的最大值为40,则的最小值是( )ABCD212某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240C150D120二、填空题:本题共4小题,每小题5分,共20分。13已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体

4、积是_14如果函数(,且,)在区间上单调递减,那么的最大值为_15某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为_.时,可使得所用材料最省.16设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.18(12分)在平面直角坐标系中,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程19(12分)追求人类与生存

5、环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于,的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.20(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值21(12分)的内角的对边分别为,已知.(1)求的大小;(2

6、)若,求面积的最大值.22(10分)如图,在直角中,点在线段上.(1)若,求的长;(2)点是线段上一点,且,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,得到,利用余弦函数的单调性,得到,再利用的单调性求解.【题目详解】设,所以 ,因为当时,即,所以,在上是增函数,在中,因为,所以,因为,且,所以,即,所以,即故选:D【答案点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.2、B【答案解析】

7、根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【题目详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【答案点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.3、A【答案解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【题目详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【答案点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.4、B【答案解析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组

8、分配到3个乡镇即得.【题目详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【答案点睛】本题考查排列组合,属于基础题.5、D【答案解析】先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【题目详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D. 【答案点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面

9、积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.6、C【答案解析】求出集合,计算出和,即可得出结论.【题目详解】,.故选:C.【答案点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.7、B【答案解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【题目详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【答案点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一

10、个中档题.8、A【答案解析】进行交集的运算即可【题目详解】,1,2,1,故选:【答案点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题9、D【答案解析】把5本书编号,然后用列举法列出所有基本事件计数后可求得概率【题目详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【答案点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率10、C【答案解析】根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【题目详解】由于,所以数列是

11、等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【答案点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.11、B【答案解析】画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【题目详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故.当,即时等号成立.故选:.【答案点睛】本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.12、C【答案解析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可【题目详解】分成两类

12、,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有共有结对方式6090150种故选:C【答案点睛】本题考查排列组合的综合应用解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数本题中有一个平均分组问题计数时容易出错两组中每组中人数都是2,因此方法数为二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.14、18【答案解析】根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.【题目详解】解:当时, ,在

13、区间上单调递减,则,即,则.当时, ,函数开口向上,对称轴为,因为在区间上单调递减,则,因为,则,整理得,又因为,则.所以即,所以当且仅当时等号成立.综上所述,的最大值为18.故答案为:18【答案点睛】本题主要考查一次函数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15、【答案解析】设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值【题目详解】设圆柱的高为,底面半径为.该圆柱形的如罐的容积为个立方单位,即.该圆柱形的表面积为.令,则.令,得;令,得.在上单调递减,在上单调递增.当

14、时,取得最小值,即材料最省,此时.故答案为:.【答案点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题16、【答案解析】不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【题目详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍, ,故答案为.【答案点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2