1、课 题:函数的单调性教材:人教版全日制普通高级中学教科书必修数学第一册上P57P60【教学目标】1使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法2通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力 3通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程【教学重点】 函数单调性的概念、判断及证明【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性【教学方法】
2、 教师启发讲授,学生探究学习【教学手段】 计算机、投影仪【教学过程】一、创设情境,引入课题课前布置任务:(1) 由于某种原因,2023年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因. (2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比拟适宜大型国际体育赛事.以下列图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考问题:观察图形,能得到什么信息?预案:(1)当天的最高温度
3、、最低温度以及何时到达;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的问题:还能举出生活中其他的数据变化情况吗?预案:水位上下、燃油价格、股票价格等归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小设计意图由生活情境引入新课,激发兴趣二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规
4、律?预案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小(2)函数在上 y随x的增大而增大,在上y随x的增大而减小(3)函数在上 y随x的增大而减小,在上y随x的增大而减小引导学生进行分类描述 (增函数、减函数)同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质问题2:能不能根据自己的理解说说什么是增函数、减函数预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性
5、的认识设计意图从图象直观感知函数单调性,完成对函数单调性的第一次认识2探究规律,理性认识问题1:以下列图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点确实切位置通过讨论,使学生感受到用函数图象判断函数单调性虽然比拟直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究设计意图使学生体会到用数量大小关系严格表述函数单调性的必要性问题2:如何从解析式的角度说明在为增函数?预案: (1) 在给定区间内取两个数,例如1和2,因为1222,所以在为增函数(2) 仿(1),取很多组验证均满足,所以在为增函数(3) 任取,因为,即,所以在为增函数对于学生错误的
6、答复,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量设计意图把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义(1)板书定义(2)稳固概念判断题:假设函数假设函数在区间和(2,3)上均为增函数,那么函数在区间(1,3)上为增函数因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调三点:单调性是对定义域
7、内某个区间而言的,离开了定义域和相应区间就谈不上单调性对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数)函数在定义域内的两个区间A,B上都是增或减函数,一般不能认为函数在上是增或减函数思考:如何说明一个函数在某个区间上不是单调函数设计意图让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例 证明函数在上是增函数1分析解决问题 针对学生可能出现的问题,组织学生讨论、交流证明:任取, 设元求差 变形,断号即函数在上是增函数 定论2归纳
8、解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论练习:证明函数在上是增函数问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗引导学生分析这种表达与定义的等价性让学生尝试用这种等价形式证明函数在上是增函数设计意图初步掌握根据定义证明函数单调性的方法和步骤等价形式进一步开展可以得到导数法,为用导数方法研究函数单调性埋下伏笔四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结1小结(1) 概念探究过程:直观到抽象、特殊到一般、感性到理性(2) 证明方法和步骤:设元、作差、变形、断号、定论(3)
9、 数学思想方法和思维方法:数形结合,等价转化,类比等2作业书面作业:课本第60页 习题2.3 第4,5,6题课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有 (2) 研究函数的单调性,并结合描点法画出函数的草图函数的单调性说课稿北京景山学校 许云尧一、 教学内容的分析1教材的地位和作用首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的根底上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段那么是在高三利用导数为工具研究函数的单调
10、性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定根底其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要根底,是解决数学问题的常用工
11、具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.2教学的重点和难点对于函数的单调性,学生的认知困难主要在两个方面:首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比拟困难.其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比拟薄弱的. 根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.二、 教学目标确实定根据本课教
12、材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:1学生能从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法2通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力 3通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;经历从具体到抽象,从特殊到一般,从感性到理性的认知过程三、 教学方法的选择1教学方法本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.
13、教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有时机经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.2教学手段 教学中使用了多媒体投影和计算机来辅助教学目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识四、 教学过程的设计为到达本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下: (一)创设情境,引入课题概念的形成主要依靠对感
14、性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从具体材料有关奥运会天气的例子出发,而不是从抽象语言入手来引入函数的单调性.使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神在课前,我给学生布置了两个任务:(1) 由于某种原因,2023年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因. 课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比拟适宜大型
15、国际体育赛事.(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上我引导学生观察2006年8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子如燃油价格等. 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小 (二)归纳探索,形成概念在本阶段的教学中,为使学生充分感受数学概念的发生与开展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.1借助图象,直观感知本环节