1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为 ABCD2设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD3是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD4一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD5已知集合U1,2,3,4,5,6,A2,4,B3,4,则( )A3,5,6B1
3、,5,6C2,3,4D1,2,3,5,66在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A60种B70种C75种D150种7已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD8已知单位向量,的夹角为,若向量,且,则( )A2B2C4D69已知函数,下列结论不正确的是( )A的图像关于点中心对称B既是奇函数,又是周期函数C的图像关于直线对称D的最大值是10ABC中,AB3,AC4,则ABC的面积是( )ABC3D11已知数列是公比为的正项等比数列,若、
4、满足,则的最小值为( )ABCD12已知二次函数的部分图象如图所示,则函数的零点所在区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.14已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为_15已知函数,若函数有3个不同的零点x1,x2,x3(x1x2x3),则的取值范围是_16已知等差数列的前n项和为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱锥中,侧面为等边三角形,侧棱.(1)求证:平面平面;(
5、2)求三棱锥外接球的体积.18(12分)已知函数.()已知是的一个极值点,求曲线在处的切线方程()讨论关于的方程根的个数.19(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.20(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:,其中均为常数,为自然对数的底数现该公司收集了近12年的年研发资金投入量和年销售额的数据,并对
6、这些数据作了初步处理,得到了右侧的散点图及一些统计量的值令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; 参考数据:,21(12分)已知a0,证明:122(10分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共
7、12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率【题目详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,6和28恰好在同一组的概率故选:B【答案点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题2、A【答案解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,在上有
8、且仅有5个零点,.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.3、B【答案解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【题目详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得
9、,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【答案点睛】考查线面所成的角的求法,及正切值为定值时的情况,属于中等题4、B【答案解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【题目详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【答案点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.5、B【答案解析】按补集、交集定义,即可求解.【题目详解】1,3,5,6,1,2,5,6,所以1,5,6.故选:B.
10、【答案点睛】本题考查集合间的运算,属于基础题.6、C【答案解析】根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案【题目详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C【答案点睛】本题考查排列组合的应用,涉及分步计数原理问题,属于基础题7、A【答案解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【题目详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【答案点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生
11、对这些知识的掌握水平和分析推理能力.8、C【答案解析】根据列方程,由此求得的值,进而求得.【题目详解】由于,所以,即,解得.所以所以.故选:C【答案点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.9、D【答案解析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果【题目详解】解:,正确;,为奇函数,周期函数,正确;,正确;D: ,令,则,则时,或时,即在上单调递增,在和上单调递减;且,故D错误故选:【答案点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题10、A【答案解析】由余弦定理求出角,再由三角形面积公式计
12、算即可.【题目详解】由余弦定理得:,又,所以得,故ABC的面积.故选:A【答案点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.11、B【答案解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【题目详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【答案点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题12、B【答案解
13、析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【题目详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为二面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积为.故答案为:【答案点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.14、【答案解析】设弦所在的直线与椭圆相