1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D62若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之
2、一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A B C D3设为非零向量,则“”是“与共线”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件4如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD5函数(其中,)的图象如图,则此函数表达式为( )ABCD6若直线与圆相交所得弦长为,则( )A1B2CD37函数的图象如图所示,为了得到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位8已知类产品共两件,类产品共三件,混放在一起,现需要通过
3、检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为( )ABCD9已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )ABCD10下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位11为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位12在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( )ABCD二、填空题:本题共4小题,每小题5分
4、,共20分。13五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成_种不同的音序.14已知数列满足,若,则数列的前n项和_15已知函数的图象在点处的切线方程是,则的值等于_.16已知,满足,则的展开式中的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的短轴的两个端点分别为、,焦距为(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为证明:点在轴上18(12分)已
5、知函数.(1)解不等式;(2)若,求证:.19(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.20(12分)如图所示,已知平面,为等边三角形,为边上的中点,且.()求证:面;()求证:平面平面;()求该几何体的体积21(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.22(10分)如图,在四棱锥中,底面,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有
6、一项是符合题目要求的。1、D【答案解析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求出,再结合为线段的中点,即可求出到的距离【题目详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【答案点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题2、B【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题
7、的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。3、A【答案解析】根据向量共线的性质依次判断充分性和必要性得到答案.【题目详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,故不必要.故选:.【答案点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.4、C【答案解析】直线恒过定点,由此推导出,由此能求出点的
8、坐标,从而能求出的值【题目详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,解得,故选:C【答案点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.5、B【答案解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【题目详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【答案点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想
9、,数形结合思想,属于基础题.6、A【答案解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【题目详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【答案点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.7、C【答案解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【题目详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【答案点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求8、D【答案解析】根据分步计
10、数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【题目详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【答案点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.9、A【答案解析】根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【题目详解】由题可知原式为,该复数为纯虚数,所以.故选:A【答案点睛】本题考查复数的运算和复数的分类,属基础题.10、D【答案解析】根据函数图像得
11、到函数的一个解析式为,再根据平移法则得到答案.【题目详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【答案点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.11、D【答案解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换12、A【答案解析】根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【题目详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【答案点睛】本题考查三角函数的定义以
12、及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【题目详解】若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1【答案点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属
13、于基础题.14、【答案解析】,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【题目详解】由题为等差数列,,故答案为【答案点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.15、【答案解析】利用导数的几何意义即可解决.【题目详解】由已知,故.故答案为:.【答案点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.16、1【答案解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【题目详解】由题意,的展开式中的系数为故答案为:1【答案点睛】本题考查二项式定理,掌握二项式定理的应用是解
14、题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【答案解析】(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【题目详解】(1)由题设,得,所以,即故椭圆的方程为;(2)设,则,所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为直线的方程为,直线的方程为联立,解得点的纵坐标为因为点在椭圆上,所以,则,所以点在轴上【答案点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.18、(1);(2)证明见解析.【答案解析】(1)分、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只