收藏 分享(赏)

2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc

上传人:sc****y 文档编号:18192 上传时间:2023-01-06 格式:DOC 页数:16 大小:1.66MB
下载 相关 举报
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第1页
第1页 / 共16页
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第2页
第2页 / 共16页
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第3页
第3页 / 共16页
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第4页
第4页 / 共16页
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第5页
第5页 / 共16页
2023学年黑龙江省佳木斯市第一中学高考适应性考试数学试卷(含解析).doc_第6页
第6页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数,则下列说法正确的是( )ABCD2甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD3在中,“”是“”的(

2、)A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件4已知复数满足,则( )AB2C4D35数列满足:,则数列前项的和为ABCD6 “幻方”最早记载于我国公元前500年的春秋时期大戴礼中“阶幻方”是由前个正整数组成的个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示)则“5阶幻方”的幻和为( )A75B65C55D457的展开式中的系数是( )A160B240C280D3208设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面9过双曲线的右焦点F作双曲线C的

3、一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D10已知函数,则,的大小关系为( )ABCD11若点是角的终边上一点,则( )ABCD12若直线与圆相交所得弦长为,则( )A1B2CD3二、填空题:本题共4小题,每小题5分,共20分。13如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_,点到直线的距离的最大值为_.14双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为_,离心率为_.15在中,则_16工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓

4、.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.18(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.19(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到

5、曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值20(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.21(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.22(10分)在中,内角的边长分别为,且(1)若,求的值;(2)若,且的面积,求和的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用不等式性质可判断,利用对

6、数函数和指数函数的单调性判断.【题目详解】解:对于实数, ,不成立对于不成立对于利用对数函数单调递增性质,即可得出对于指数函数单调递减性质,因此不成立 故选:【答案点睛】利用不等式性质比较大小要注意不等式性质成立的前提条件解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法2、B【答案解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【答案点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.3、C【答案解析】由余弦函数的单

7、调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【题目详解】余弦函数在区间上单调递减,且,由,可得,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【答案点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.4、A【答案解析】由复数除法求出,再由模的定义计算出模【题目详解】故选:A【答案点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题5、A【答案解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选

8、A点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6、B【答案解析】计算的和,然后除以,得到“5阶幻方”的幻和.【题目详解】依题意“5阶幻方”的幻和为,故选B.【答案点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.7、C【答案解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【题目详解】由二项展开式的通项公式可得的第项为,令,

9、则,又的第为,令,则,所以的系数是.故选:C【答案点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.8、B【答案解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【题目详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【答案点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误9、C【答案解析】由得F是弦AB的中点.进

10、而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题10、B【答案解析】可判断函数在上单调递增,且,所以.【题目详解】在上单调递增,且,所以.故选:B【答案点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.11、A【答案解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【题目详解】由题意,点是角的终边上一点,根据三角函数的定

11、义,可得,则,故选A.【答案点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【答案解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【题目详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【答案点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【答案解析】三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出

12、点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【题目详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直线确定平面,直线确定平面,则,同理,为所求,所以到直线最大距离为.故答案为:;.【答案点睛】本题考查空间中的距离、正四面体的结构特征,考查空间想象能力,属于较难题.14、

13、2 2 【答案解析】设双曲线的右焦点为,根据周长为,计算得到答案.【题目详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【答案点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.15、1【答案解析】由已知利用余弦定理可得,即可解得的值【题目详解】解:,由余弦定理,可得,整理可得:,解得或(舍去)故答案为:1【答案点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题16、60【答案解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步

14、乘法计数原理,求得总共有种方法.详解:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【答案解析】(1)由已知条件得到方程组,解得即可;(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;【题目详解】解:(1)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2