收藏 分享(赏)

2023届林芝高考数学考前最后一卷预测卷(含解析).doc

上传人:sc****y 文档编号:18390 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.80MB
下载 相关 举报
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第1页
第1页 / 共18页
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第2页
第2页 / 共18页
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第3页
第3页 / 共18页
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第4页
第4页 / 共18页
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第5页
第5页 / 共18页
2023届林芝高考数学考前最后一卷预测卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD3等比数列的前项和为,若

3、,则( )ABCD4函数的图象可能是下面的图象( )ABCD5已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )ABCD6百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅

4、”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( )ABCD7已知复数满足,则的最大值为( )ABCD68已知直线与圆有公共点,则的最大值为( )A4BCD9达芬奇的经典之作蒙娜丽莎举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者人迷.某业余爱好者对蒙娜丽莎的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,

5、两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将蒙娜丽莎中女子的嘴唇视作的圆弧对应的圆心角大约等于( )ABCD10甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D11在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD12我国古代数学著作九章算术中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )A45B60C75D

6、100二、填空题:本题共4小题,每小题5分,共20分。13设双曲线的一条渐近线方程为,则该双曲线的离心率为_.14设定义域为的函数满足,则不等式的解集为_15已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_.16甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩形中,E,F分别为,的中点.沿将矩形折起,使,如图

7、所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.18(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.19(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.20(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.21(12分)已知数列和满足:.(

8、1)求证:数列为等比数列;(2)求数列的前项和.22(10分)如图,在中,点在上,.(1)求的值;(2)若,求的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由题意分别判断命题的充分性与必要性,可得答案.【题目详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【答案点睛】本题主要考查充分条件、必要条件

9、的判定,意在考查学生的逻辑推理能力.2、A【答案解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A3、D【答案解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列4、C【答案解析】因为,所以函数的图象关于点(2,0)对称,排除A,B当时,所以,排除D选C5、B【答案解析】根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【题目详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,又以为直径的圆经过点,则,即,解得,所以,即

10、,即,所以,双曲线的离心率为.故选:B.【答案点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.6、A【答案解析】由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【题目详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【答案点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.7、B【答案解析】设,利用复数几何意义计算.【题目详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故

11、.故选:B.【答案点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.8、C【答案解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【题目详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,在递增,所以的最大值.故选:C【答案点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.9、A【答案解析】由已知,设可得于是可得,进而得出结论【题目详解】解:依题意,设则,设蒙娜丽莎中女子的嘴唇视作的圆弧对应的圆心角为则,故选:A【答案点睛】本题考查了直角三角形的边角关系、三角函数的

12、单调性、切线的性质,考查了推理能力与计算能力,属于中档题10、A【答案解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.11、D【答案解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.12、B【答案解析】根据程序框图中程序的功能,可以列方程计算【题目详解】由题意,故选:B.【答案点睛】本题考查程序框图,读懂程序的功

13、能是解题关键二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据渐近线得到,计算得到离心率.【题目详解】,一条渐近线方程为:,故,.故答案为:.【答案点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.14、【答案解析】根据条件构造函数F(x),求函数的导数,利用函数的单调性即可得到结论【题目详解】设F(x),则F(x),F(x)0,即函数F(x)在定义域上单调递增,即F(x)F(2x),即x1不等式的解为故答案为:【答案点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键15、【答案解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入

14、抛物线方程求解即可【题目详解】解:双曲线的右准线,渐近线,双曲线的右准线与渐近线的交点,交点在抛物线上,可得:,解得故答案为【答案点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题16、【答案解析】根据条件概率的求法,分别求得,再代入条件概率公式求解.【题目详解】根据题意得所以故答案为:【答案点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】(1) 取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面. (2) 建立空间直角坐标系,求得半平面的法向量: ,然后利用空间向量的相关结论可求得二面角的余弦值.【题目详解】(1)取中点R,连接,则在中,且,又Q是中点,所以,而且,所以,所以四边形是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2