1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。12019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅
2、展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:甲不是军事科学院的;来自军事科学院的不是博士;乙不是军事科学院的;乙不是博士学位;国防科技大学的是研究生则丙是来自哪个院校的,学位是什么( )A国防大学,研究生B国防大学,博士C军事科学院,学士D国防科技大学,研究生2已知集合,则( )ABC或D3若平面向量,满足,则的最大值为( )ABCD4若,则函数在区间内单调递增的概率是( )A B C D5已知平面和直
3、线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则6已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD7已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD8已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD9已知,如图是求的近似值的一个程序框图,则图中空白框中应填入ABCD10已知定义在上的函数的周期为4,当时,则( )ABCD11已知中内角所对应的边依次为,若,则的面积为( )ABCD12是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的
4、是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在区间(-,1)上递增,则实数a的取值范围是_14在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为_15在的展开式中,的系数为_用数字作答16连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)山东省高考改革试点方案规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构
5、成将每门选考科目的考生原始成绩从高到低划分为、共8个等级参照正态分布原则,确定各等级人数所占比例分别为、选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望(附:若随机变量,则,)18(12分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.19(12分)的
6、内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.20(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.21(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.22(10分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案
7、解析】根据可判断丙的院校;由和可判断丙的学位.【题目详解】由题意甲不是军事科学院的,乙不是军事科学院的;则丙来自军事科学院;由来自军事科学院的不是博士,则丙不是博士;由国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【答案点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.2、D【答案解析】首先求出集合,再根据补集的定义计算可得;【题目详解】解:,解得,.故选:D【答案点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.3、C【答案解析】可根据题意把要求的向量重新组合成已知向量的表达,利用向量
8、数量积的性质,化简为三角函数最值.【题目详解】由题意可得:,故选:C【答案点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.4、B【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.5、C【答案解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【题目详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C
9、【答案点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6、D【答案解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【题目详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【答案点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.7、C【答案解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【题目详解】设分别是的中点平面 是等边三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面
10、圆的圆心球的表面积为 球的半径平面 本题正确选项:【答案点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题8、C【答案解析】先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【题目详解】由题化简得,作出的图象,又由易知故选:C.【答案点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.9、C【答案解析】由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,若图中空白框中填入,则,若图中空白框中填
11、入,则,此时不成立,;执行第二次循环:由均可得,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第三次循环:由可得,符合题意,由可得,不符合题意,所以图中空白框中应填入,故选C10、A【答案解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【题目详解】定义在上的函数的周期为4,当时,.故选:A.【答案点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.11、A【答案解析】由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【题目详解】由余弦定理,得,由,解得,所以,.故选:A.【答
12、案点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.12、D【答案解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【题目详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【答案点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式
13、求得的取值范围.【题目详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【答案点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.14、【答案解析】根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【题目详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则 所以所以,所以异面直线与所成角的余弦值为,故答案为:.【答案点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.15、1【答案解析】利用二项展开式的通项公式求出展开式的通项,令,求出展开式
14、中的系数【题目详解】二项展开式的通项为 令得的系数为 故答案为1【答案点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具16、【答案解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()1636人;()见解析【答案解析】()根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;()由题意得成绩在区间61,80的概率为,且,由此可得的分布列和数学期望【题目详解】()因为物理原始成绩,所以所以物理原始