收藏 分享(赏)

临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc

上传人:g****t 文档编号:18790 上传时间:2023-01-06 格式:DOC 页数:19 大小:2.06MB
下载 相关 举报
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第1页
第1页 / 共19页
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第2页
第2页 / 共19页
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第3页
第3页 / 共19页
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第4页
第4页 / 共19页
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第5页
第5页 / 共19页
临夏市重点中学2023学年高考仿真卷数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数 (i为虚数单位)的共轭复数是A1+iB1iC1+iD1i2在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水

2、、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( )A0.2B0.5C0.4D0.83已知的面积是, ,则( )A5B或1C5或1D4函数(其中,)的图象如图,则此函数表达式为( )ABCD5设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D366如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )ABCD7将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )ABCD8若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取值范

3、围是( )ABCD9二项式展开式中,项的系数为( )ABCD102019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D36011设命题函数在上递增,命题在中,下列为真命题的是( )ABCD12如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若满足,则目标函数的最大值为_.14已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.15函数的最小正周期是_,单调递增区间是_.16在

4、中,点在边上,且,设,则_(用,表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)自湖北武汉爆发新型冠状病毒肺炎疫情以来,在以为核心的党中央的正确领导和指挥下,全国各地纷纷驰援,湖北的疫情形势很快得到了控制,但是国际疫情越来越严重,医用口罩等物资存在很大缺口.某口罩生产厂家复工复产后,抢时生产口罩,以驰援国际社会,已知该企业前10天生产的口罩量如下表所示:第天12345678910产量y(单位:万个)76.088.096.0104.0111.0117.0124.0130.0135.0140.0对上表的数据作初步处理,得到一些统计量的值:mn82.53998.95

5、70.5(1)求表中m,n的值,并根据最小二乘法求出y关于x的线性回归方程(回归方程系数精确到0.1);(2)某同学认为更适宜作为y关于x的回归方程模型,并以此模型求得回归方程为.经调查,该企业第11天的产量为145.3万个,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?并说明理由.附:,;18(12分)在中,角,所对的边分别为,且求的值;设的平分线与边交于点,已知,求的值.19(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.20(12分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosAasi

6、nB1(1)求A;(2)已知a2,B,求ABC的面积21(12分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.22(10分)已知函数,.(1)当时,求函数在点处的切线方程;比较与的大小; (2)当时,若对时,且有唯一零点,证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】分析:化简已知复数z,由共轭复数的定义可得详解:化简可得z= z的共轭复数为1i.故选B点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题2、B【答案

7、解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【题目详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【答案点睛】本小题主要考查古典概型的计算,属于基础题.3、B【答案解析】,,若为钝角,则,由余弦定理得,解得;若为锐角,则,同理得.故选B.4、B【答案解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【题目详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【答案点睛】本题

8、主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.5、B【答案解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B6、C【答案解析】利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【题目详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴/,建立空间直角坐标系如图设,所以则所以所以故选:C【答案点睛】本题考查异面直线所成成

9、角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.7、B【答案解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【题目详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【答案点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.8、D【答案解析】利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【题目详解】的定义域为,所以在上递减,在

10、上递增,在处取得极小值也即是最小值,所以在区间上的最大值为.要使在区间上任取三个实数,均存在以,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【答案点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.9、D【答案解析】写出二项式的通项公式,再分析的系数求解即可.【题目详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【答案点睛】本题主要考查了二项式定理的运算,属于基础题.10、B【答案解析】2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位

11、数的个数为.故选B11、C【答案解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【题目详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【答案点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题12、B【答案解析】连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解【题目详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且

12、,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【答案点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、-1【答案解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【题目详解】由约束条件作出可行域如图, 化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为【答案点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注

13、意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、【答案解析】由分段函数可得不满足题意;时,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和【题目详解】解:由函数,可得的增区间为,时,时,当关于的不等式的解集为,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点综上可得的所有值的和为1故答案为:1【答案点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题15、 , 【答案解析】化简函数的解析式,利用余弦函数的图象和性质求解即可【题目详解】函数,最小正周期,令,可得,所以单调递增区间是,故答案为:,【答案点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题16、【答案解析】结合图形及向量的线性运算将转化为用向量表示,即可得到结果【题目详解】在中,因为,所以,又因为,所以故答案为:【答案点睛】本题主要考查三角形中向量的线性运算,关键是利用已知向量为基底,将未知向量通过几何条件向基底转化三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)二次函数模型的回归方程来拟合效果会更好,理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2