收藏 分享(赏)

2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc

上传人:sc****y 文档编号:20646 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.43MB
下载 相关 举报
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第1页
第1页 / 共21页
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第2页
第2页 / 共21页
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第3页
第3页 / 共21页
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第4页
第4页 / 共21页
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第5页
第5页 / 共21页
2023届四川省绵阳市高中高考压轴卷数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD2

2、已知集合,则等于( )ABCD3已知集合,若,则( )A或B或C或D或4已知是等差数列的前项和,则( )A85BC35D5不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD6若直线与曲线相切,则( )A3BC2D7已知函数,当时,恒成立,则的取值范围为( )ABCD8如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )A3BC4D9已知等差数列的前n项和为,则A3B4C5D610正的边长为2

3、,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD11执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD12已知函数的导函数为,记,N. 若,则 ( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在边长为2的正三角形中,则的取值范围为_.14(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是_15过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为_.16若函

4、数为奇函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.18(12分)已知椭圆的短轴的两个端点分别为、,焦距为(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为证明:点在轴上19(12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.20(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与

5、椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:21(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.22(10分)已知,函数.(1)若函数在上为减函数,求实数的取值范围;(2)求证:对上的任意两个实数,总有成立.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】先求出四个顶点、四个焦点的坐标,四个顶点构成

6、一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【题目详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【答案点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.2、C【答案解析】先化简集合A,再与集合B求交集.【题目详解】因为,所以.故选:C【答案点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.3、B

7、【答案解析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.4、B【答案解析】将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,.故选:B【答案点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.5、A【答案解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【答案点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.6、A【答案解析】设切点为,对求导

8、,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【题目详解】设切点为,由得,代入得,则,故选A.【答案点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.7、A【答案解析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【题目详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【答

9、案点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.8、B【答案解析】先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【题目详解】由题意可知:,所以,所以,所以,又因为,所以,所以.故选:B.【答案点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.9、C【答案解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C10、D【答案解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接

10、,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【题目详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【答案点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中

11、来计算,本题有一定的难度.11、B【答案解析】先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【题目详解】本程序框图的功能是计算,中的最大公约数,所以,故当输入,则计算机输出的数是57.故选:B.【答案点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.12、D【答案解析】通过计算,可得,最后计算可得结果.【题目详解】由题可知:所以所以猜想可知:由所以所以故选:D【答案点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.二、填空题:本题共4小题,每小题5分,共20分。1

12、3、【答案解析】建立直角坐标系,依题意可求得,而,故可得,且,由此构造函数,利用二次函数的性质即可求得取值范围【题目详解】建立如图所示的平面直角坐标系,则,设,根据,即,则,即,则,所以,且,故,设,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为故答案为:【答案点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题14、【答案解析】记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共

13、9个,故选出的只牛蛙中至少有只雄蛙的概率是15、2【答案解析】联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可.【题目详解】如图,设,由,则,由可得,由,则,所以,得.故答案为:2【答案点睛】此题考查了抛物线的性质,属于中档题.16、-2【答案解析】由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【题目详解】由题意,的定义域为,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【答案点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1);(2)是

14、,【答案解析】(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程; (2) 可设所在直线的方程为,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、的斜率、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积【题目详解】(1)因为椭圆的离心率为,所以,即,又,所以,因为点在椭圆上,所以,由解得,所以椭圆C的方程为(1)可知,可设所在直线的方程为,由,得,设,则,设直线、的斜率分别为、,因为三点共线,所以,即,所以,又,因为直线、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【答案点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2