收藏 分享(赏)

2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc

上传人:sc****y 文档编号:20704 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.72MB
下载 相关 举报
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第1页
第1页 / 共18页
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第2页
第2页 / 共18页
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第3页
第3页 / 共18页
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第4页
第4页 / 共18页
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第5页
第5页 / 共18页
2023届山西省晋中市祁县二中高考数学三模试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知,分别是三个内角,的对边,则( )ABCD2已知是虚数单位,则复数( )ABC2D3若两个非零向量、满足,且,则与夹角的余弦值为( )ABCD4设是等差数列的前n项和,且,则( )ABC1D25已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD6已知函数,则函数的图象大致为( )ABCD7已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD8已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D29刘徽是我国魏晋时期伟大的数学家,他在九章算术中对勾股定理的证明如图所示.“勾自乘为朱方

3、,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为( )ABCD10已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD11设等比数列的前项和为,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件12在中,内角的平分线交边于点,则的面积是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知等比数列满足,则该数列的前5项的和为_.14某种牛肉干每袋的质量服从正态

4、分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_袋.15展开式中的系数的和大于8而小于32,则_16在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.18(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切

5、点分别为,点、分别在第一和第二象限内,求的面积.19(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.20(12分)已知函数和的图象关于原点对称,且(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围21(12分)在,这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,_,是否存在正整数,使得成立?22(10分)设都是正数,且,求证:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四

6、个选项中,只有一项是符合题目要求的。1、C【答案解析】原式由正弦定理化简得,由于,可求的值.【题目详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【答案点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.2、A【答案解析】根据复数的基本运算求解即可.【题目详解】.故选:A【答案点睛】本题主要考查了复数的基本运算,属于基础题.3、A【答案解析】设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【题目详解】设平面向量与的夹角为,可得,在等式两边平方得,化简得

7、.故选:A.【答案点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.4、C【答案解析】利用等差数列的性质化简已知条件,求得的值.【题目详解】由于等差数列满足,所以,.故选:C【答案点睛】本小题主要考查等差数列的性质,属于基础题.5、D【答案解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【答案点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点

8、三角形有关的问题,本题属于基础题.6、A【答案解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【题目详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A【答案点睛】本题考查了函数图像的性质,属于中档题.7、B【答案解析】利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解.【题目详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【答案点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.8、D【答案解

9、析】化简z(1+2i)(1+ai)=,再根据zR求解.【题目详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.9、C【答案解析】首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【题目详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【答案点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.10、B【答案解析】求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可

10、确定参数范围【题目详解】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【答案点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围11、C【答案解析】根据等比数列的前项和公式,判断出正确选项.【题目详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【答案点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.12、B【答案解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则

11、.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、31【答案解析】设,可化为,得,14、1【答案解析】根据正态分布对称性,求得质量低于的袋数的估计值.【题目详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【答案点睛】本小题主要考查正态分布对称性的应用,属于基础题.15、4【答案解析】由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.

12、【题目详解】观察式子可知,故答案为:4.【答案点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.16、【答案解析】设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,所以平面,所以.由于,所以,也即,所以四边形是矩形. 而.从而.故答案为:.【答案点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【答案解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;

13、(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1)(2)【答案

14、解析】(1)因为,可得,即可求得答案;(2)分别设、的斜率为和,切点,可得过点的抛物线的切线方程为:,联立直线方程和抛物线方程,得到关于一元二次方程,根据,求得,进而求得切点,坐标,根据两点间距离公式求得,根据点到直线距离公式求得点到切线的距离,进而求得的面积.【题目详解】(1),解得,抛物线的方程为.(2)由题意可知,、的斜率都存在,分别设为和,切点,过点的抛物线的切线:,由,消掉,可得,即,解得,又由,得,同理可得,切线的方程为,点到切线的距离为,即的面积为.【答案点睛】本题主要考查了求抛物线方程和抛物线中三角形面积问题,解题关键是掌握抛物线定义和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2