1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数有两个极值点,则实数的取值范围是( )ABCD2博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就
2、乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2CP1+P2DP1P23为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位4已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D35设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD6已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件7若直线经过抛物
3、线的焦点,则( )ABC2D8已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在( ).A第一象限B第二象限C第三象限D第四象限9已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD10某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元11已知是偶函数,在上单调递减,则的解集是ABCD12已知函数,则( )A2B3C4D5二、填空题:本题共4小题,每小题5分,共20分。1
4、3正项等比数列|满足,且成等差数列,则取得最小值时的值为_14已知集合U1,3,5,9,A1,3,9,B1,9,则U(AB)_.15平行四边形中,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为_.16若函数为偶函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键字的选取,某研究人员将唐诗分成7大类别,并从全唐诗48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:爱情婚姻咏史怀古边塞战争山水田园
5、交游送别羁旅思乡其他总计篇数100645599917318500含“山”字的篇数5148216948304271含“帘”字的篇数2120073538含“花”字的篇数606141732283160(1)根据上表判断,若从全唐诗含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;(2)已知检索关键字的选取规则为:若有超过95%的把握判断“某字”与“某类别”有关系,则“某字”为“某类别”的关键字;若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;设“山”“帘”“花”和“爱情婚姻”对应的观测值分
6、别为,.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.属于“爱情婚姻”类不属于“爱情婚姻”类总计含“花”字的篇数不含“花”的篇数总计附:,其中.0.050.0250.0103.8415.0246.63518(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.19(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.20(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有21(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个
7、特征向量,求的值.22(10分)如图,底面ABCD是边长为2的菱形,平面ABCD,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程
8、f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.2、C【答案解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【题目详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【答案点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.3、D【答案解析】试题分析:因为,所以为得到的
9、图象,只需要将的图象向右平移个单位;故选D考点:三角函数的图像变换4、C【答案解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;5、A【答案解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【题目详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【答案点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式6、B【答案解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即
10、可判断两命题的关系.【题目详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【答案点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.7、B【答案解析】计算抛物线的交点为,代入计算得到答案.【题目详解】可化为,焦点坐标为,故.故选:.【答案点睛】本题考查了抛物线的焦点,属于简单题.8、D【答案解析】设,由,得,利用复数相等建立方程组即可.【题目详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【答案点睛】本题考查复数的几何意义,涉及到共轭复数的定义、
11、复数的模等知识,考查学生的基本计算能力,是一道容易题.9、D【答案解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.10、D【答案解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选11、D【答案解析】先由是偶函数,得到关于直线对称;进而得出
12、单调性,再分别讨论和,即可求出结果.【题目详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【答案点睛】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.12、A【答案解析】根据分段函数直接计算得到答案.【题目详解】因为所以.故选:.【答案点睛】本题考查了分段函数计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】先由题意列出关于的方程,求得的通项公式,再表示出即可求解.【题目详解】解:设公比为,且
13、,时,上式有最小值,故答案为:2.【答案点睛】本题考查等比数列、等差数列的有关性质以及等比数列求积、求最值的有关运算,中档题.14、5【答案解析】易得ABA1,3,9,则U(AB)515、【答案解析】依题意可得、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【题目详解】解:依题意可得、四点共圆,所以因为,所以,所以三角形为正三角形,则,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,且面面, 面所以面,所以外接球的半径所以故答案为:【答案点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.16、【答案解析】二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【题目详解】由为偶函数,知其一次项的系数为0,所以,所以,故答案为:-5【答案点睛】本题考查由奇偶性求解参数,求函数值,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小;属于“山水田园”类别的概率约为;属于“其他”类别