1、馨雅资源网 一元一次方程应用(二)-“希望工程”义演与追赶小明(基础)知识讲解责编:康红梅 【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题方程解答由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答 要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间
2、的关系,寻找等量关系(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一(4)“解”就是解方程,求出未知数的值(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可(6)“答”就是写出答案,注意单位要写清楚要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:
3、分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题) (1)三个基本量间的关系: 路程=速度时间 (2)基本类型有: 相遇问题(或相向问题):基本量及关系:相遇路程=速度和相遇时间 寻找相等关系:甲走的路程+乙走的路程两地距离追及问题:基本量及关系:追及路程=速度差追及时间寻找相等关系:第一, 同地不同时出发:前者走的路程追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离追者走的路程航行问题:基本量及关系:顺流速度=静水速度+水流速度,逆流
4、速度=静水速度水流速度,顺水速度逆水速度2水速;寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析【典型例题】类型一、“希望工程”义演(分配问题)1(2015春南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x人,则调至乙地段(29x)人,则调配后甲地段有(28+x)人,乙地段有(15+29x)人,根据关键语句“调配后甲地段人
5、数是乙地段人数的2倍”可得方程28+x=2(15+29x),再解方程即可【答案与解析】解:设应调至甲地段x人,则调至乙地段(29x)人,根据题意得:28+x=2(15+29x),解得:x=20,所以:29x=9,答:应调至甲地段20人,则调至乙地段9人【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人举一反三:【变式1】 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如右表所示:品名辣椒蒜苗批发价(单位:元/kg)1.61.8零售价(单位:元/kg)2.63.3问:(1)辣椒和蒜苗各批发了
6、多少kg?(2)他当天卖完这些辣椒和蒜苗能赚多少钱?【答案】(1)设该经营户从蔬菜市场批发了辣椒kg,则蒜苗kg,得 解得:(2)利润: (元)答:该经营户批发了10kg辣椒和30kg蒜苗;当天能赚55元【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式2】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A种糖果x千克,则B种糖果用(100-x)千克.依题意,得: 28x+20(100-x)=25100 解得:x=62.5.
7、 当x=62.5时,100-x=37.5.答:要用A、B两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城试问学校到县城的距离是多少千米?【答案与解析】 解:设小山娃预订的时间为x小时,由题意得: 4x+0.55(x-0.5),解得x3 所以4x+0.543+0.512.5(千米) 答:学校到县城的距离是12.5千米【总结升华】当直接设未知数有困难时,可采用间接设的方法即所设的不是最后所求的,而是通过求其它的数量间接地求最
8、后的未知量举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度【答案】解:设这段坡路长为a千米,汽车的平均速度为x千米/时,则上坡行驶的时间为小时,下坡行驶的时间为小时依题意,得:,化简得: 显然a0,解得答:汽车的平均速度为千米/时2.相遇问题(相向问题) 【高清课堂:实际问题与一元一次方程(一) 388410 相遇问题】3A、B两地相距100km,甲、乙两人骑自行车分别从A、B两地出发相向而行,甲的速度是23km/h,乙的速度是21km/h,甲骑了1h后,乙从B地出发,问甲经过多少时间与乙相遇?【思路点拨】正确、全面地分析题目所
9、包含的数量关系,是列方程解应用题的关键,本例所含的数量关系有:(1)甲车行程+乙车行成=100km,(2)甲车时间=乙车时间+1(3)甲车行程=100-乙车行程(4)乙车行程=100-甲车行程,这些都能够列出方程,但选用(1)更自然些.【答案与解析】解:设甲经过x小时与乙相遇.由题意得: 解得, x=2.75答:甲经过2.75小时与乙相遇【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】(2015绥棱县期末)A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时
10、后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x小时后两车相遇,根据题意得:60x+40(x)=3003.追及问题(同向问题)4一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x小时可以追上学生队伍,则根据题意,得,得:, 小时=10分钟答:通讯员用10分钟可以追上学生队伍【总结升华】追及问题:路程差=速度差时间,此外注意:方程中x表示小时,18表示分钟,两边单位不一致,应先统一单位4.航行问题(顺逆流问题)
11、5一艘船航行于A、B两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离【答案与解析】解法1:设船在静水中速度为x千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)5(x-4),解得:x=16,(16+4)3=60(千米) 答:两码头之间的距离为60千米解法2:设A、B两码头之间的距离为x千米,则船顺水航行时速度为千米/时,逆水航行时速度为千米/时,由船在静水中的速度不变得方程:,解得:答:两码头之间的距离为60千米【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题学魁网