1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知偶函数在区间内单调递减,则,满足( )ABCD2已知函数的最小正周期为,为了得到函数的图象,只
2、要将的图象()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度3如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD4三棱锥中,侧棱底面,则该三棱锥的外接球的表面积为( )ABCD5设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直D相交但不垂直6双曲线的渐近线方程为( )ABCD7阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD8设全集集合,则( )ABCD9函数的图像大致为( )ABCD10已知函数,则方程的实数根的个数是( )ABCD11某几何体的三视图如图所
3、示,则该几何体的体积为()ABCD12已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( )A该超市2018年的12个月中的7月份的收益最高B该超市2018年的12个月中的4月份的收益最低C该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元二、填空题:本题共4小题,每小题5分,共20分。13直线(,)过圆:的圆心,则的最小值是_.14已知是定义在上的偶函数,其导函数为若时,则不等式的解集是_15已知函数f(x)=axlnxbx(a,bR)在点(e,
4、f(e)处的切线方程为y=3xe,则a+b=_.16秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().当时,求函数的极值;若函数存在“F点”,求k的值;(2)已知函数(a,b,)存在两个不相等的“F点”,且,求a的取值范围.18(12分)如图,空间几何体中,是边长为2的等边三角形,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余
5、弦值.19(12分)在中,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.20(12分)如图,在中,的角平分线与交于点,.()求;()求的面积.21(12分)椭圆:的离心率为,点 为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.22(10分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.2023学年模拟测试
6、卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【题目详解】因为偶函数在减,所以在上增,.故选:D【答案点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.2、A【答案解析】由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象故选A考点:函数的图象与性质【名师点睛】三角函数图象变换方法:3、C【答案解析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值【题目
7、详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,解得,故选:C【答案点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.4、B【答案解析】由题,侧棱底面,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键5、C【答案解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂
8、直考点:直线与直线的位置关系6、A【答案解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【题目详解】双曲线得,则其渐近线方程为,整理得.故选:A【答案点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.7、C【答案解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【题目详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【答案点睛】本题主要考查了循环结构的程序框
9、图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.8、A【答案解析】先求出,再与集合N求交集.【题目详解】由已知,又,所以.故选:A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.9、A【答案解析】根据排除,利用极限思想进行排除即可【题目详解】解:函数的定义域为,恒成立,排除,当时,当,排除,故选:【答案点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题10、D【答案解析】画出函数 ,将方程看作交点个数,运用图象判断根的个数【题目详解】画出函数令有两解 ,则分别有3个,
10、2个解,故方程的实数根的个数是3+2=5个故选:D【答案点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题11、A【答案解析】利用已知条件画出几何体的直观图,然后求解几何体的体积【题目详解】几何体的三视图的直观图如图所示,则该几何体的体积为:故选:【答案点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键12、D【答案解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【题目详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益2030201030306040
11、30305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【答案点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、;【答案解析】求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值【题目详解】圆:的标准方程为,圆心为,由题意,即,当且仅当 ,即时等号成立,故答案为:【答案点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求
12、最小值,目的是凑配出基本不等式中所需的“定值”14、【答案解析】构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【题目详解】令,则是上的偶函数,则在上递减,于是在上递增由得,即,于是,则,解得故答案为:【答案点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.15、0【答案解析】由题意,列方程组可求,即求.【题目详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【答案点睛】本题考查导数的几何意义,属于基础题.16、1055【答案解析】模拟执行程序框图中的程序,即可求得结果.【题
13、目详解】模拟执行程序如下:,满足,满足,满足,满足,不满足,输出.故答案为:1055.【答案点睛】本题考查程序框图的模拟执行,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为1,无极大值.实数k的值为1.(2)【答案解析】(1)将代入可得,求导讨论函数单调性,即得极值;设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【题目详解】解:(1)当时, (),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.设是函数的一个“F点”().(),是函数的零点.,由,得,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,),可得().又函数存在不相等的两个“F点”和,