1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足,其中为虚数单位,则( )ABCD2已知斜率为2的直线l过抛物线C:的焦点F,且与抛物
2、线交于A,B两点,若线段AB的中点M的纵坐标为1,则p( )A1BC2D43已知,则 ()ABCD4已知,都是偶函数,且在上单调递增,设函数,若,则( )A且B且C且D且5复数,是虚数单位,则下列结论正确的是AB的共轭复数为C的实部与虚部之和为1D在复平面内的对应点位于第一象限6已知向量,夹角为, ,则( )A2B4CD7点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD8函数的图象大致为( )ABCD9已知,复数,且为实数,则( )ABC3D-310已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD11已知
3、双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD12将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:它的图象关于直线x=对称;它的最小正周期为;它的图象关于点(,1)对称;它在上单调递增.其中所有正确结论的编号是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是_.14已知数列与均为等差数列(),且,则
4、_15如图,的外接圆半径为,为边上一点,且,则的面积为_.16设函数,若对于任意的,2,不等式恒成立,则实数a的取值范围是 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.18(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.19(12
5、分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.20(12分)如图,底面是等腰梯形,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值21(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.22(10分)已知函数的最大值为2.()求函数在上的单调递减区间;()中,角所对的边分别是,且,求的面积2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,
6、共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先化简求出,即可求得答案.【题目详解】因为,所以所以故选:A【答案点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.2、C【答案解析】设直线l的方程为xy,与抛物线联立利用韦达定理可得p【题目详解】由已知得F(,0),设直线l的方程为xy,并与y22px联立得y2pyp20,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),y1+y2p,又线段AB的中点M的纵坐标为1,则y0(y1+y2),所以p=2,故选C【答案点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属
7、中档题3、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力4、A【答案解析】试题分析:由题意得,若:,若:,若:,综上可知,同理可知,故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义
8、域上.5、D【答案解析】利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论【题目详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D【答案点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为6、A【答案解析】根据模长计算公式和数量积运算,即可容易求得结果.【题目详解】由于,故选:A.【答案点睛】本题考查向量的数量积运算,模长的求解,
9、属综合基础题.7、C【答案解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【题目详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【答案点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.8、A【答案解
10、析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【题目详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【答案点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项9、B【答案解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【题目详解】因为为实数,所以,解得.【答案点睛】本题考查复数的概念,考查运算求解能力.10、D【答案解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研
11、究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【题目详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,则,解得:设,则,解得:,则本题正确选项:【答案点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合
12、的方式来进行求解.11、A【答案解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【题目详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【答案点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.12、B【答案解析】根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【题目详解】因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin3
13、(x+)-+1=2sin(3x+)+1,其最小正周期为,故正确;令3x+=k+,得x=+(kZ),所以x=不是对称轴,故错误;令3x+=k,得x=-(kZ),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故正确;令2k-3x+2k+,kZ,得-x+,取k=2,得x,取k=3,得x,故错误;故选:B【答案点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据抛物线,不妨设,
14、取 ,通过求导得, ,再根据以线段为直径的圆恰好经过,则 ,得到,两式联立,求得点N的轨迹,再求解最值.【题目详解】因为抛物线,不妨设,取 ,所以,即,所以 ,因为以线段为直径的圆恰好经过,所以 ,所以,所以,由 ,解得,所以点在直线 上,所以当时, 最小,最小值为.故答案为:2【答案点睛】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.14、20【答案解析】设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,解方程求出公差,代入等差数列的通项公式即可求解.【题目详解】设等差数列的公差为,由数列为等差数列知,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【答案点睛】本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.