1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数满足:当时,且对任意,都有,则( )A0B1C-1D2已知f(x)=是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)
2、D(-3,4)3已知函数,若所有点,所构成的平面区域面积为,则( )ABC1D4如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD5已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:,.其中满足条件的所有直线的编号有( )ABCD6定义在上的函数满足,则()A-1B0C1D27已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D28设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件9是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的
3、外接球的表面积最小时,四棱锥的体积为( )ABCD10函数的部分图象如图所示,则的单调递增区间为( )ABCD11已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD12复数的共轭复数为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最小值为_14在的展开式中的系数为,则_15已知,则_.16记Sk1k+2k+3k+nk,当k1,2,3,时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推测,AB_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列
4、满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:18(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点. (I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.19(12分)已知函数()求函数的极值;()若,且,求证:20(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数)(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长21(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)23624
5、6257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份20140需求量2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.22(10分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
6、要求的。1、C【答案解析】由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【答案点睛】本题考查了分段函数和函数周期的应用,属于基础题.2、C【答案解析】由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【题目详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【答案点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.3、D【答案解析】依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【题目详解】解:,因为,所以,在上单调递增,则
7、在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【答案点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题4、C【答案解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【题目详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【答案点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.5、D【答案解析】求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【题目详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆
8、心到直线的距离为:,而,与的面积相等,或,即到直线的距离或时满足条件,根据点到直线距离可知,满足条件.故选:D.【答案点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.6、C【答案解析】推导出,由此能求出的值【题目详解】定义在上的函数满足,故选C【答案点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.7、D【答案解析】化简z(1+2i)(1+ai)=,再根据zR求解.【题目详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.8、A【答案解析】
9、根据对数的运算分别从充分性和必要性去证明即可.【题目详解】若, ,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【答案点睛】本题考查充要条件的定义,判断充要条件的方法是: 若为真命题且为假命题,则命题p是命题q的充分不必要条件; 若为假命题且为真命题,则命题p是命题q的必要不充分条件; 若为真命题且为真命题,则命题p是命题q的充要条件; 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件. 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.9、D【答案解析】首先由题意得,当梯形的外接圆圆心为四棱锥的外
10、接球球心时,外接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【题目详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【答案点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个
11、是一个难点,考查了学生空间想象能力和分析能力,是一道难度较大的题目.10、D【答案解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【题目详解】由图象知,所以,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:【答案点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.11、D【答案解析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【题目详解】对于A,当,时,则平面与平面可能相交,故不能作为的充分条件,故A错误;对于B,当,时,则,故不能作为的充分条件,故B错误;对于C,当,时,则平面与平面
12、相交,故不能作为的充分条件,故C错误;对于D,当,则一定能得到,故D正确.故选:D.【答案点睛】本题考查了面面垂直的判断问题,属于基础题.12、D【答案解析】直接相乘,得,由共轭复数的性质即可得结果【题目详解】其共轭复数为.故选:D【答案点睛】熟悉复数的四则运算以及共轭复数的性质.二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】作出可行域,平移基准直线到处,求得的最小值.【题目详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【答案点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.14、2【答案解析】首先求出的展开项中
13、的系数,然后根据系数为即可求出的取值.【题目详解】由题知,当时有,解得.故答案为:.【答案点睛】本题主要考查了二项式展开项的系数,属于简单题.15、【答案解析】首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.【题目详解】因为,所以,即,所以,故答案是.【答案点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.16、【答案解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【题目详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,A,A1,解得B,所以AB故答案为:【答案点睛】本题考查了归纳推理,意在考查学生的推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2)证明见解析【答案解析】(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,(2)设数列的前n项和为,则两式相减得,所以, 设则,所以.18、()(II)【答案解析】(I)联立